Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell-specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy.multiple sclerosis | autoimmunity | pregnancy | Treg | steroid hormones R eproduction is fundamental to the maintenance and evolution of species. To ensure successful pregnancy, mothers have to establish robust immunological tolerance toward the semiallogeneic conceptus providing a secure niche for fetal development. Multiple mechanisms have evolved to prevent fetus-directed immune responses and alloreactive infiltration of the fetomaternal interface (1). These include creating a privileged local microenvironment that hampers T-cell priming and infiltration (2-4) but also imply global modulation of the immune system by pregnancy hormones and the shedding of fetal antigen into the mothers circulation (5).Intriguingly, pregnancy is also well known to suppress the inflammatory activity of a number of cell-mediated autoimmune diseases, including rheumatoid arthritis (6, 7), autoimmune hepatitis (8), and multiple sclerosis (MS) (9, 10). However, this beneficial effect is limited to the period of gestation and usually followed by a rebound of disease activity postpartum. In the case of MS, third trimester pregnancy leads to a remarkable reduction of the MS relapse rate (11), which exceeds the effects of most currently available disease-modifying drugs. Similarly, pregnancy as well as treatment with pregnancy hormones protect rodents from experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS (12) in both SJL/J and C57BL/6 mice (13-16), underpinning an interaction between pregnancy-related immune and endocrine adaptations and central nervous system (CNS) autoimmunity (17).The sensitive balance between conventional effector T cells (Tcons) and regulatory T cells (Tregs) has transpired as a common theme that connects reproductive biology and autoimmunity on a mechanistic level (18)(19)(20)(21). Tregs are characterized by the transcription factor forkhead box P3 (Foxp3) and effectively control effector responses mounted by Tcons in...
The aim of this study was to investigate the mechanisms by which N,N'-dimethylbiguanide metformin (50 mg/100 g body weight (BW) in 0.05 ml of water, given orally with a cannula) prevents the ovarian disorders provoked by the hyperandrogenization with dehydroepiandrosterone (DHEA) in prepuberal BALB/c mice. The injection of DHEA (6 mg/100 g BW in 0.1 ml of oil) for 20 consecutive days re-creates a mouse model that resembles some aspects of the human polycystic ovary syndrome (PCOS). The treatment with DHEA increased ovarian oxidative stress because it enhanced lipid peroxidation (LPO) and diminished both catalase (CAT) activity and glutathione (GSH) content. Therefore, the treatment with DHEA diminished both ovarian nitric oxide synthase (NOS) activity and prostaglandin E (PGE) production. When metformin was administered together with DHEA, the ovarian GSH content, NOS activity and PGE production did not differ when compared with controls. However, metformin was not able to prevent the effect of DHEA on ovarian LPO or CAT activity. Finally, DHEA increased the ovarian protein expressions of inducible NOS (iNOS), inducible cyclooxygenase (COX2) and the phosphorylated AMP-dependent kinase alpha (AMPK-alpha) (Thr172). Metformin administered together with DHEA was able to prevent the increase of ovarian iNOS and COX2 expressions and to enhance the activation of phosphorylated AMPK-alpha expression.
The present study investigated the role of the N, N{ 0 }-dimethylbiguanide metformin (50 mg/100 g body weight in 0.05 ml water, given orally with a canulla) in the prevention of endocrine and immune disorders provoked by the hyperandrogenization with dehydroepiandrosterone (DHEA) in prepuberal BALB/c mice. The treatment with DHEA (6 mg/100 g body weight in 0.1 ml oil) for 20 consecutive days, recreates a mouse model that resembles some aspects of the human polycystic ovary syndrome (PCOS). The treatment with DHEA did not modify either body mass index (BMI) or blood glucose levels, but did increase fasting insulin levels when compared with controls. Markers of ovarian function -serum estradiol (E), progesterone (P) and ovarian prostaglandin E (PGE) -were evaluated. The treatment with DHEA increased serum E and P levels while ovarian PGE diminished. When metformin was administered together with DHEA, serum insulin, E and P levels, and ovarian PGE values did not differ when compared with controls. Using flow cytometry assays we found that the treatment with DHEA diminished the percentage of the CD4 1 T lymphocyte population and increased the percentage of the CD8 1 T lymphocyte population from both ovarian tissue and retroperitoneal lymph nodes. However, when metformin was administered together with DHEA, the percentages of CD4 1 and CD8 1 T lymphocyte populations from both ovarian tissue and retroperitoneal lymph nodes were similar to those observed in controls. Finally, when DHEA was administered alone it increased the serum tumor necrosis factor-alpha (TNF-a) levels when compared with controls; however, when metformin was administered together with DHEA, serum TNF-a levels were similar to controls. These results indicate that metformin is able, directly or indirectly, to avoid the endocrine and immune alterations produced when mice are hyperandrogenized with DHEA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.