Nutrition during fetal life is a critical factor contributing to diabetes development in adulthood. The aim of our study was to verify: 1) whether a high-fat (HF) diet in young adult mice induces alterations in beta-cell mass, proliferation, neogenesis, and apoptosis, as well as insulin sensitivity and secretion; 2) whether these alterations may be reversible after HF diet suspension; 3) the effects in a first (F1) and second generation (F2) of mice without direct exposure to a HF diet after birth. Type 2 diabetes developed in adult mice on a HF diet, in F1 mice that were HF diet-exposed during fetal or neonatal life, and in F2 mice whose mothers were HF diet-exposed during their fetal life. beta-cell mass, replication, and neogenesis were high in HF diet-exposed mice and decreased after diet suspension. beta-cell mass and replication remained high in F1 mice and decreased in F2 mice whose mothers were exposed to a HF diet. beta-cell neogenesis was present in adult mice on a HF diet and in F1 mice that were HF diet-exposed during fetal and/or neonatal life. We conclude that a HF diet during fetal life, particularly if combined with the same insult during the suckling period, can induce the type 2 diabetes phenotype, which can be directly transmitted to the progeny even in the absence of additional dietary insults.
Brisinda, Donatella, Maria Emiliana Caristo, and Riccardo Fenici. Contactless magnetocardiographic mapping in anesthetized Wistar rats: evidence of age-related changes of cardiac electrical activity. Am J Physiol Heart Circ Physiol 291: H368 -H378, 2006. First published December 22, 2005 doi:10.1152/ajpheart.01048.2005 is the recording of the magnetic field (MF) generated by cardiac electrophysiological activity. Because it is a contactless method, MCG is ideal for noninvasive cardiac mapping of small experimental animals. The aim of this study was to assess age-related changes of cardiac intervals and ventricular repolarization (VR) maps in intact rats by means of MCG mapping. Twenty-four adult Wistar rats (12 male and 12 female) were studied, under anesthesia, with the same unshielded 36-channel MCG instrumentation used for clinical recordings. Two sets of measurements were obtained from each animal: 1) at 5 mo of age (297.5 Ϯ 21 g body wt) and 2) at 14 mo of age (516.8 Ϯ 180 g body wt). RR and PR intervals, QRS segment, and QTpeak, QTend, JTpeak, JTend, and Tpeak-end were measured from MCG waveforms. MCG imaging was automatically obtained as MF maps and as inverse localization of cardiac sources with equivalent current dipole and effective magnetic dipole models. After 300 s of continuous recording were averaged, the signal-to-noise ratio was adequate for study of atrial and ventricular MF maps and for three-dimensional localization of the underlying cardiac sources. Clear-cut age-related differences in VR duration were demonstrated by significantly longer QT end, JTend, and Tpeak-end in older Wistar rats. Reproducible multisite noninvasive cardiac mapping of anesthetized rats is simpler with MCG methodology than with ECG recording. In addition, MCG mapping provides new information based on quantitative analysis of MF and equivalent sources. In this study, statistically significant age-dependent variations in VR intervals were found. magnetocardiography; cardiac mapping; ventricular repolarization; aging; sex ACCORDING TO RECENT GUIDELINES (7,21,26,27,35,39,48,60,63,65), several ECG indexes, such as QT duration and its dispersion, are used to identify risk of sudden death and assess potential cardiotoxicity of new drugs. The latter requires a large number of animal studies in the preclinical phase of new drug development. For noninvasive assessment of ventricular repolarization (VR) in small experimental animals, the most frequently used method is the 12-lead ECG (24). Extensive body surface potential mapping (BSPM), although more sensitive than the standard ECG for evaluation of repolarization inhomogeneity (2,19,38,57,70), is difficult in small animals, and its use is limited (8, 49).Magnetocardiography (MCG), an easier method for simplification of noninvasive cardiac electrophysiological mapping, can be an appealing alternative to BSPM. Multichannel MCG mapping measures the magnetic fields (MF) generated by cardiac activation currents, with minimal distortion due to the shape and conductivity of the lungs...
Most ruminants and pigs used for scientific and educational aims are bred not for these purposes but in a farm environment. Given the wide range of diseases that these species might have, ensuring that the animals’ health status is appropriate can be complex and challenging. The Federation of European Laboratory Animal Science Associations has previously published recommendations for the health monitoring of experimental colonies of pigs (1998) and, respectively, calves, sheep and goats (2000). Unfortunately, the uptake of those recommendations was poor and insufficiently reported in scientific publications. These new recommendations for best practice focus on the main species of ruminants (cattle, sheep and goats) and pigs. They provide general and specific information helpful for designing a health management programme for the suppliers and for the user establishments, as well as guidance on animal procurement. Critical thinking based on the fields of use of the animals is promoted, aiming to help in taking informed decisions rather than establishing an exhaustive exclusion list for pathogens. Implementing the best health and welfare management practices should be done under the guidance of a competent attending veterinarian, with expertise and sufficient authority to take the appropriate action, doubled by excellent communication skills. It is strongly recommended that the user establishment’s veterinarian works in close collaboration with the supplier’s veterinarian.
The nervous system is one of the most complex expressions of biological evolution. Its high performance mostly relies on the basic principle of the action potential, a sequential activation of local ionic currents along the neural fiber. The implications of this essentially electrical phenomenon subsequently emerged in a more comprehensive electromagnetic perspective of neurotransmission. Several studies focused on the possible role of photons in neural communication and provided evidence of the transfer of photons through myelinated axons. A hypothesis is that myelin sheath would behave as an optical waveguide, although the source of photons is controversial. In a previous work, we proposed a model describing how photons would arise at the node of Ranvier. In this study we experimentally detected photons in the node of Ranvier by Ag+ photoreduction measurement technique, during electrically induced nerve activity. Our results suggest that in association to the action potential a photonic radiation takes place in the node.
Background: Since the esophagus has no redundancy, congenital and acquired esophageal diseases often require esophageal substitution, with complicated surgery and intestinal or gastric transposition. Peri-and-post-operative complications are frequent, with major problems related to the food transit and reflux. During the last years tissue engineering products became an interesting therapeutic alternative for esophageal replacement, since they could mimic the organ structure and potentially help to restore the native functions and physiology. The use of acellular matrices pre-seeded with cells showed promising results for esophageal replacement approaches, but cell homing and adhesion to the scaffold remain an important issue and were investigated. Methods: A porcine esophageal substitute constituted of a decellularized scaffold seeded with autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs) was developed. In order to improve cell seeding and distribution throughout the scaffolds, they were micro-perforated by Quantum Molecular Resonance (QMR) technology (Telea Electronic Engineering). Results: The treatment created a microporous network and cells were able to colonize both outer and inner layers of the scaffolds. Non seeded (NSS) and BM-MSCs seeded scaffolds (SS) were implanted on the thoracic esophagus of 4 and 8 pigs respectively, substituting only the muscle layer in a mucosal sparing technique. After 3 months from surgery, we observed an esophageal substenosis in 2/4 NSS pigs and in 6/8 SS pigs and a non-practicable stricture in 1/4 NSS pigs and 2/8 SS pigs. All the animals exhibited a normal weight increase, except one case in the SS group. Actin and desmin staining of the post-implant scaffolds evidenced the regeneration of a muscular layer from one anastomosis to another in the SS group but not in the NSS one. Conclusions: A muscle esophageal substitute starting from a porcine scaffold was developed and it was fully repopulated by BM-MSCs after seeding. The substitute was able to recapitulate in shape and function the original esophageal muscle layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.