(1) Background: Sustained axonal degeneration may play a critical role in prolonged disorder of consciousness (DOCs) pathophysiology. We evaluated levels of neurofilament light chain (NFL), an axonal injury marker, in patients with unresponsive wakefulness syndrome (UWS) and in the minimally conscious state (MCS) after traumatic brain injury (TBI) and hypoxic-ischemic brain injury (HIBI). (2) Methods: This prospective multicenter blinded study involved 70 patients with prolonged DOC and 70 sex-/age-matched healthy controls. Serum NFL levels were evaluated at 1–3 and 6 months post-injury and compared with those of controls. NFL levels were compared by DOC severity (UWS vs. MCS) and etiology (TBI vs. HIBI). (3) Results: Patients’ serum NFL levels were significantly higher than those of controls at 1–3 and 6 months post-injury (medians, 1729 and 426 vs. 90 pg/mL; both p < 0.0001). NFL levels were higher in patients with UWS than in those in MCS at 1–3 months post-injury (p = 0.008) and in patients with HIBI than in those with TBI at 6 months post-injury (p = 0.037). (4) Conclusions: Patients with prolonged DOC present sustained axonal degeneration that is affected differently over time by brain injury severity and etiology.
Little is known about plastic changes occurring in the brains of patients with severe disorders of consciousness (DOCs) caused by acute brain injuries at rest and during rehabilitative treatment. Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity whose production is powerfully modulated by physical exercise. In this study, we compared serum BDNF levels in 18 patients with unresponsive wakefulness syndrome (UWS) and in a minimally conscious state (MCS) with those in 16 sex- and age-matched healthy controls. In 12 patients, serum BDNF levels before and after verticalization with ErigoPro robot-assisted lower-limb training were compared. Serum BDNF levels were significantly lower in patients (median, 1141 pg/ml; 25th and 75th percentiles, 1016 and 1704 pg/ml) than in controls (median, 2450 pg/ml; 25th and 75th percentiles, 2100 and 2875 pg/ml; p<0.001). BDNF levels measured before and after verticalization with robot-assisted lower-limb training did not change (p=0.5). Moreover, BDNF levels did not differ between patients with UWS and MCS (p=0.2), or between patients with traumatic and nontraumatic brain injuries (p=0.6). BDNF level correlated positively with the time since brain injury (p=0.025). In conclusion, serum BDNF levels are reduced in patients with UWS and MCS and cannot be improved by verticalization associated with passive lower-limb training. Additional studies are needed to better understand the mechanisms underlying BDNF reduction in patients with DOCs and to determine the best rehabilitative strategies to promote restorative plastic changes in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.