Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane. Bimetallic Pd-Pt/HY catalysts prepared by the co-impregnation method with an atomic variation of Pd/Pd+Pt were studied to convert toluene and methylcyclohexane. The catalysts were characterized by the BET method, chemisorption of CO by the pulse method, programmed temperature reduction (H2-TPR), and programmed ammonia thermo-desorption (NH3TPD). Results of chemisorption of CO and H2-TPR for Pd-Pt/HY catalysts suggest the existence of a strong interaction between Pd and Pt. The NH3-TPD showed that incorporating metals influences the percentage of relative distribution of weak/strong acid sites presented in decreasing order of acidity: Pd0Pt100/HY>Pd100Pt0/HY>Pd33Pt67/HY. Atomic composition Pd/Pd+Pt equal to 0.33, and relative distribution of weak/strong acid sites equal to 2, favor hydrogenation of toluene to methylcyclohexane in metal sites and subsequent skeletal isomerization in the acidic sites through dimethylcyclopentane intermediate and ring-opening in the metal sites, leading to increased formation of n-heptane relative to iso-heptane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.