Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
With advances in medical technology, the number of people over the age of 60 is on the rise, and thus, increasing the prevalence of age-related pathologies within the aging population. Neurodegenerative disorders, cancers, metabolic and inflammatory diseases are some of the most prevalent age-related pathologies affecting the growing population. It is imperative that a new treatment to combat these pathologies be developed. Although, still in its infancy, the CRISPR-Cas9 system has become a potent gene-editing tool capable of correcting gene-mediated age-related pathology, and therefore ameliorating or eliminating disease symptoms. Deleting target genes using the CRISPR-Cas9 system or correcting for gene mutations may ameliorate many different neurodegenerative disorders detected in the aging population. Cancer cells targeted by the CRISPR-Cas9 system may result in an increased sensitivity to chemotherapeutics, lower proliferation, and higher cancer cell death. Finally, reducing gene targeting inflammatory molecules production through microRNA knockout holds promise as a therapeutic strategy for both arthritis and inflammation. Here we present a review based on how the expanding world of genome editing can be applied to disorders and diseases affecting the aging population.
The peptide hormone relaxin has beneficial roles in several organs through its action on its cognate G protein-coupled receptor, RXFP1. Relaxin administration is limited to intravenous, subcutaneous, intramuscular, or spinal injection. Another drawback of peptide-based therapy is the short half-life, which requires continuous delivery of the drug to achieve efficient concentration in target organs. The discovery of a non-peptide small molecule agonist of RXFP1, ML290, provides an alternative to the natural ligand. This review summarizes the development of ML290 and its potential future therapeutic applications in various diseases, including liver fibrosis and cardiovascular diseases. We also discuss the development of small molecule agonists targeting the insulin-like 3 receptor, RXFP2, and propose the potential use of these small molecules in the context of bone and muscle remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.