Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications.
The causal agent of diseases in many economically important plants is attributed to the xylem-limited bacterium Xylella fastidiosa. The detection of this plant pathogen has been hampered due to its difficult isolation and slow growth on plates. Nearly complete nucleotide sequences of the 16S rRNA gene and partial sequences of the gyrB gene were determined for 18 strains of X. fastidiosa isolated from different plant hosts. A phylogenetic analysis, based on gyrB, grouped strains in three clusters; grape-isolated strains formed one cluster, citrus-coffee strains formed another cluster, and a third cluster resulted from all other strains. Primer pairs designed for the 16S rRNA and gyrB genes were extensively searched in databases to verify their in silico specificity. Primer pairs were certified with 30 target and 36 nontarget pure cultures of microorganisms, confirming 100% specificity. A multiplex PCR protocol was developed and its sensitivity tested. Sequencing of PCR products confirmed the validity of the multiplex PCR. Xylella fastidiosa was detected in field-collected plants, disease vector insects, and nonsymptomatic but infected plants. Specific detection of X. fastidiosa may facilitate the understanding of its ecological significance and prevention of spread of the disease.The insect-transmitted bacterium Xylella fastidiosa (38) causes diseases in many economically important plants, including citrus, coffee, grapevine, peach, plum, almond, alfalfa, elm, oak, mulberry, maple, and oleander, by clogging the xylem and affecting water and nutrient transport (26). Control of these diseases, particularly citrus variegated chlorosis and Pierce's disease in grapevines, often relies on management of insect vectors and on inoculum reduction by elimination of diseased and surrounding plants or pruning of infected branches (26). Therefore, early detection and identification of the pathogen is a cornerstone in preventing the spread of disease.Current methods of detecting the slow-growing microorganism X. fastidiosa rely mainly on isolation and cultivation to pure culture, followed by biochemical and serological analysis. These methods are labor-and time-consuming and are complicated by the presence of many contaminant bacteria associated with the plant host (19). Other methods include scanning electron (7, 11), phase-contrast (18), and fluorescence (14) microscopy. Primer sets based on an EcoRI restriction (23) and RAPD [random(ly) amplified polymorphic DNA] fragments (25) were reported previously. However, these primers do not target any coding sequence, and to date no coherent phylogenetic analysis of their amplicons has been performed.Advances in molecular microbial ecology opened avenues for designing taxonomically meaningful highly specific PCR primers (3). The 16S rRNA gene has been widely used for this purpose, providing enough sequence information to allow the analysis of both close and distant phylogenetic relationships among microorganisms (30). However, when the resolution of the 16S rRNA gene-based analysis ...
Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic–aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds.
In the search for new organisms and new secondary metabolites, a study was conducted to evaluate the diversity of endophytic bacteria from ethnovarieties of cassava cultivated by Brazilian Amazon Indian tribes and also to study the secondary metabolites produced by a Bacillus pumilus strain. Sixty seven cassava endophytic bacteria were subjected to 16S rRNA sequencing and FAME analysis. The bacterial profile revealed that 25% of all endophytic isolates belonged to the genus Bacillus. The isolate B. pumilus MAIIIM4a showed a strong inhibitory activity against the fungi Rhizoctonia solani, Pythium aphanidermatum and Sclerotium rolfsii. Secondary metabolites of this strain were extracted using hexane, dichloromethane and ethyl acetate. Extracts were subjected to bioautography and LC/MS analysis, which allowed the identification of pumilacidin, an antifungal compound produced by B. pumilus MAIIIM4a. The bacterial endophytic localization was confirmed by cassava cell tissue examination using scanning electron microscopy. Key words: ESI-MS/MS, pumilacidin, endophytic bacteria, bioautography COMPOSTO ANTIFÚNGICO PRODUZIDO PELO ENDÓFITO DE MANDIOCA Bacillus pumilus MAIIIM4ARESUMO: Na busca de novos organismos e novos metabólitos secundários, um estudo foi conduzido visando avaliar a diversidade de bactérias endofíticas de etnovariedades de mandioca cultivadas por tribos indígenas da Amazônia brasileira e também para estudar metabólitos secundários produzidos por Bacillus pumilus. Sessenta e sete bactérias endofíticas de mandioca foram identificadas através do seqüenciamento do gene 16S rRNA e por meio da análise de ácidos graxos (FAME
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.