Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.
Prenatal stress (PS) exerts strong impact on fetal brain development and on adult offspring brain functions. Previous work demonstrated that chronic stress alters the mRNA expression of GPM6A, a neuronal glycoprotein involved in filopodium extension. In this work, we analyzed the effect of PS on gpm6a expression and the epigenetic mechanisms involved. Pregnant Wistar rats received restraint stress during the last week of gestation. Male offspring were sacrificed on postnatal days 28 and 60. Hippocampus and prefrontal cortex samples were analyzed for gene expression (qPCR for mRNAs and microRNAs), methylation status (bisulfite conversion) and protein levels. Hippocampal neurons in culture were used to analyze microRNA overexpression effects. Prenatal stress induced changes in gpm6a levels in both tissues and at both ages analyzed, indicating a persistent effect. Two CpG islands in the gpm6a gene were identified. Variations in the methylation pattern at three specific CpGs were found in hippocampus, but not in PFC samples from PS offspring. microRNAs predicted to target gpm6a were identified in silico. qPCR measurements showed that PS modified the expression of several microRNAs in both tissues, being microRNA-133b the most significantly altered. Further studies overexpressing this microRNA in neuronal cultures showed a reduction in gmp6a mRNA and protein level. Moreover filopodium density was also reduced, suggesting that GPM6A function was affected. Gestational stress affected gpm6a gene expression in offspring likely through changes in methylation status and in posttranscriptional regulation by microRNAs. Thus, our findings propose gpm6a as a novel target for epigenetic regulation during prenatal stress.
Prenatal stress exerts a strong impact on fetal brain development in rats impairing adaptation to stressful conditions, subsequent vulnerability to anxiety, altered sexual function, and enhanced propensity to self-administer drugs. Most of these alterations have been attributed to changes in the neurotransmitter dopamine (DA). In humans; dysfunction of dopaminergic system is associated with development of several neurological disorders, such as Parkinson disease, schizophrenia, attention-deficit hyperactivity disorder, and depression. Evidences provided by animal research, as well as retrospective studies in humans, pointed out that exposure to adverse events in early life can alter adult behaviors and neurochemical indicators of midbrain DA activity, suggesting that the development of the DA system is sensitive to disruption by exposure to early stressors. The purpose of this article is to provide a general overview of published studies and our own study related to the effect of prenatal insults on the development of DA metabolism and biology, focusing mainly in articles involving prenatal-restraint stress protocols in rats. We will also attempt to make a correlation between theses alterations and DA-related pathological processes in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.