(1) Objective: External fixation systems are commonly used by surgeons to ensure stabilization and consolidation of bone fractures, especially in patients who are at high risk for systematic complications. Both rigid and elastic external fixations are important in the fracture healing process. This study aims to evaluate the behavior of the Orthofix Limb Reconstruction System (LRS)® in the dynamic compression mode. (2) Methods: Experimental and numerical setups were developed using a simplified model of a human tibia which consisted of a nylon bar with a diameter of 30 mm. The bone callus was included in both setups by means of a load cell-based system, which consisted of two carbon epoxy laminated composite plates with a final stiffness of 220 N/mm. The system was evaluated experimentally and numerically, considering different numbers of pins and comparing distances between the external fixator frame and the bone, achieving a good correlation between experimental and numerical results. (3) Results: The results identified and quantified the percental load transferred to the fracture and its sensibility to the distance between the external fixator and bone. Additionally, LRS locking stiffness was evaluated which resulted from the clamp-rail clearances. The results show that the blocking effects of the free clamp movement are directly related to the fixator configuration and are responsible for changes in the amount of load that crosses the bone callus. (4) Conclusions: From the biomechanical point of view, the results suggest that the average bending span of Schanz pins and the weights of the patients should be included into clinical studies of external fixators comparisons purpose.
During recent years the number of tennis athletes has increased significantly. When playing tennis, the human body is exposed to many situations which can lead to human injuries, such as the so-called tennis elbow (lateral epicondylitis). In this work a biomechanical analysis of tennis athletes, particularly during the service, was performed, considering three different types of over-grip and the presence of one anti-vibrator device. One part of the study evaluates the exposure to hand-arm vibration of the athlete, based on the European Directive 2002/44/EC concerning the minimum health and safety requirements, regarding the exposure of workers to risks from physical agents. The second part of the study considers an infrared thermography analysis in order to identify signs of risk of injury, particularly tennis elbow, one of the most common injuries in this sport. The results show that the presence of the anti-vibrator influences the vibration values greatly in the case of athletes with more experience and also for athletes with less performance. The presence of the Cork and/or Tourna on the racket grip does not have any significant effect on the hand-arm vibration (HAV), similarly in the case of athletes with the best performance and athletes with less technique. The results indicated that the infrared thermography technique may be used to identify the risk of injuries in tennis players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.