Somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in gliomas and acute myeloid leukaemia (AML). Since patients with multiple enchondromas have occasionally been reported to have these conditions, we hypothesized that the same mutations would occur in cartilaginous neoplasms. Approximately 1200 mesenchymal tumours, including 220 cartilaginous tumours, 222 osteosarcomas and another ∼750 bone and soft tissue tumours, were screened for IDH1 R132 mutations, using Sequenom(®) mass spectrometry. Cartilaginous tumours and chondroblastic osteosarcomas, wild-type for IDH1 R132, were analysed for IDH2 (R172, R140) mutations. Validation was performed by capillary sequencing and restriction enzyme digestion. Heterozygous somatic IDH1/IDH2 mutations, which result in the production of a potential oncometabolite, 2-hydroxyglutarate, were only detected in central and periosteal cartilaginous tumours, and were found in at least 56% of these, ∼40% of which were represented by R132C. IDH1 R132H mutations were confirmed by immunoreactivity for this mutant allele. The ratio of IDH1:IDH2 mutation was 10.6 : 1. No IDH2 R140 mutations were detected. Mutations were detected in enchondromas through to conventional central and dedifferentiated chondrosarcomas, in patients with both solitary and multiple neoplasms. No germline mutations were detected. No mutations were detected in peripheral chondrosarcomas and osteochondromas. In conclusion, IDH1 and IDH2 mutations represent the first common genetic abnormalities to be identified in conventional central and periosteal cartilaginous tumours. As in gliomas and AML, the mutations appear to occur early in tumourigenesis. We speculate that a mosaic pattern of IDH-mutation-bearing cells explains the reports of diverse tumours (gliomas, AML, multiple cartilaginous neoplasms, haemangiomas) occurring in the same patient.
It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions.
Ollier disease and Maffucci syndrome are characterized by multiple central cartilaginous tumors that are accompanied by soft tissue hemangiomas in Maffucci syndrome. We show that in 37 of 40 individuals with these syndromes, at least one tumor has a mutation in isocitrate dehydrogenase 1 (IDH1) or in IDH2, 65% of which result in a R132C substitution in the protein. In 18 of 19 individuals with more than one tumor analyzed, all tumors from a given individual shared the same IDH1 mutation affecting Arg132. In 2 of 12 subjects, a low level of mutated DNA was identified in non-neoplastic tissue. The levels of the metabolite 2HG were measured in a series of central cartilaginous and vascular tumors, including samples from syndromic and nonsyndromic subjects, and these levels correlated strongly with the presence of IDH1 mutations. The findings are compatible with a model in which IDH1 or IDH2 mutations represent early post-zygotic occurrences in individuals with these syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.