COVID-19 has caused a certain proportion of patients to be hospitalized in intensive care units (ICU) and may cause musculoskeletal and neurological deficits following intubation and mechanical ventilation. The aim of this study was to quantify and describe the presence of shoulder pain in patients released from hospitals after suffering COVID-19. Patients with positive Apley tests were sent to a physiatrist for a clinical evaluation, ultrasound and electromyography (EMG). This evaluation was completed with a pain scale, joint range and shoulder muscle strength evaluations. Of the one-hundred-sixteen patients, seventy eight entered the respiratory rehabilitation program. Twenty patients were sent to the multidisciplinary shoulder team for positive Apley scratch tests. Of these twenty patients, one had only an EMG, ten had only ultrasounds, seven had an EMG and ultrasound and two did not need complementary tests. The twenty patients were sent to the physical therapist, with all presenting pain and diminished joint range and muscle strength in the affected shoulder. In this context, shoulder pain could be associated with the prone position in the ICU. We suggest time control and position change for patients on mechanical ventilation in a prone position with COVID-19.
Background and Objectives: Patients who survive severe COVID-19 require significant pulmonary rehabilitation. Heart rate (HR) has been used as a safety variable in the evaluation of the results of interventions in patients undergoing pulmonary rehabilitation. The aim of this research was to analyse HR during a pulmonary rehabilitation program in post-severe COVID-19 patients who survived mechanical ventilation (MV). The study includes the initial and final evaluations and aerobic training sessions. Materials and Methods: Twenty patients (58 ± 13 years, 11 men) were trained for 8 weeks. A 6-minute walk test (6 MWT) was performed and, subsequently, a supervised and individualised training plan was created. Resting heart rate (RHR), heart rate recovery (HRR), heart rate at minute 6 (HR6 min) and the product of HR6 min and systolic blood pressure (HR6 minxSBP) were measured at 6 MWT. In addition, HR was measured at each training session. Results: After 8 weeks of pulmonary rehabilitation, patients decreased their RHR from 81.95 ± 9.36 to 73.60 ± 9.82 beats/min (p < 0.001) and significantly increased their HRR from 12.45 ± 10.22 to 20.55 ± 7.33 beats/min (p = 0.005). HR6 min presented a significant relationship with walking speed and walked distance after the pulmonary rehabilitation period (r = 0.555, p = 0.011 and r = 0.613, p = 0.011, respectively). HR6 minxSBP presented a significant relationship with walking speed and walked distance after training (r = 0.538, p = 0.014 and r = 0.568, p = 0.008, respectively). In the pulmonary rehabilitation sessions, a significant decrease in HR was observed at minutes 1, 6 and 15 (p < 0.05) between sessions 1 and 6 and at minute 1 between sessions 1 and 12. Conclusions: Eight weeks of individualised and supervised pulmonary rehabilitation were effective in improving RHR and HRR in COVID-19 patients surviving MV. HR is an easily accessible indicator that could help to monitor the evaluation and development of a pulmonary rehabilitation program in COVID-19 patients who survived MV.
Introduction Patients who suffered severe COVID-19 need pulmonary rehabilitation. Training may be prescribed objectively based on the maximum speed in the six-minute walk test. The objective of this study was to determine the effects of a personalized pulmonary rehabilitation program based on the six-minute walk test speed for post-COVID-19 patients. Methods Observational quasi-experimental study. The pulmonary rehabilitation program consisted of 8 weeks of training, twice a week for 60 minutes per session of supervised exercise. Additionally, the patients carried out home respiratory training. Patients were evaluated by exercise test, spirometry and the Fatigue Assessment Scale before and after the eight-week pulmonary rehabilitation program. Results After the pulmonary rehabilitation program, forced vital capacity increased from 2.47 ± 0.60 to 3.06 ± 0.77 L ( p < .001) and the six-minute walk test result increased from 363.50 ± 88.87 to 480.9 ± 59.25 m ( p < .001). In fatigue perception, a significant decrease was observed, from 24.92 ± 7.01 to 19.10 ± 7.07 points ( p < .01). Isotime evaluation of the Incremental Test and the Continuous Test showed a significant reduction in heart rate, dyspnoea and fatigue. Conclusion The eight-week personalized pulmonary rehabilitation program prescribed on the basis of the six-minute walk test speed improved respiratory function, fatigue perception and the six-minute walk test result in post-COVID-19 patients. KEY MESSAGES COVID-19 is a multisystem disease with common complications affecting the respiratory, cardiac and musculoskeletal systems. The 6MWT speed-based training plan allowed for increased speed and incline during the eight-week RP program. Aerobic, strength and flexibility training reduced HR, dyspnoea and fatigue in severe post-COVID-19 patients.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.