Phenolic compounds are found in both free and bound forms in cereals. The majority is in the insoluble bound form, that is, bound to cell wall material, such as ferulic acid and its derivatives. The antioxidant properties of the phenolic compounds in grains are associated with the health benefits of grains and grain products. The extraction capacity of several solvent mixtures, for extracting free phenols from barley flours, and the possibility of employing a rapid automated solvent extraction method were studied. The extraction yield of each method was evaluated by correlating several spectrophotometric indices (absorption at 280, 320, and 370 nm and total phenolic compounds by the Folin-Ciocalteu method) with the antioxidant activities of the barley extracts (scavenging activity by the 2,2-diphenyl-1-picrylhydrazyl method). Interesting results were obtained when ethanol and acetone-based extraction mixtures were employed to extract free phenols. A comparison was made between alkaline and acid hydrolysis. The extraction yield of bound phenolic compounds increased when the digestion time for alkaline hydrolysis was prolonged.
A new liquid chromatography methodology coupled to a diode array detector and a time-of-flight mass spectrometer has been developed for the simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd). This method has allowed the simultaneous determination of these two families of compounds with the same analytical method for the first time. A fused-core column C18 has been used, and the analysis has been performed in less than 27 min. Both chromatographic and electrospray ionization time-of-flight mass spectrometry parameters have been optimized to improve the sensitivity and to maximize the number of compounds detected. A validation of the method has also been carried out, and free and bound polar fractions of quinoa have been studied. Twenty-five compounds have been tentatively identified and quantified in the free polar fraction, while five compounds have been tentatively identified and quantified in the bound polar fraction. It is important to highlight that 1-O-galloyl-β-D-glucoside, acacetin, protocatechuic acid 4-O-glucoside, penstebioside, ethyl-m-digallate, (epi)-gallocatechin, and canthoside have been tentatively identified for the first time in quinoa. Free phenolic compounds have been found to be in the range of 2.746-3.803 g/kg of quinoa, while bound phenolic compounds were present in a concentration that varies from 0.139 and 0.164 g/kg. Indeed, saponins have been found to be in a concentration that ranged from 5.6 to 7.5% of the total composition of whole quinoa flour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.