Several bimetallic PtSn catalysts supported on multiwalled carbon nanotubes for ethanol electro‐oxidation were prepared by conventional impregnation‐reduction method. The Pt loading was kept at 20 wt.% and Pt:Sn atomic ratios of 5:1, 3:1, and 1:1 were selected. The catalysts were structurally characterized by temperature programmed reduction, X‐ray diffraction, X‐ray photoelectron spectroscopy, H2 chemisorption, cyclohexane dehydrogenation reaction, and transmission electron microscopy. The electrochemical characterization of the electrocatalytic materials was carried out in acid medium by cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and CO stripping techniques. Among the different stoichiometries tested, the Pt(20)Sn(12.17)/CNT catalyst exhibited the highest electrocatalytic activity for ethanol oxidation reaction, with mass current density of 189.5 mA mgPt−1 at 796 mV (vs. Ag/AgCl).
Multiwalled carbon nanotubes and Vulcan carbon were functionalized with a 30 %v/v hydrogen peroxide solution and employed as supports for Pt and PtSn catalysts prepared by the polyol method. PtSn catalysts with a Pt loading of 20 wt.% and a Pt : Sn atomic ratio equal to 3 : 1 were evaluated in the ethanol electrooxidation reaction. The effects of the oxidizing treatment on the surface area and the surface chemical nature were analyzed through N2 adsorption, isoelectric point, and temperature‐programmed desorption measurements. Results showed that the H2O2 treatment affects the surface area of the carbons to a great extent. Characterization results indicated that the performance of the electrocatalysts strongly depends both on the presence of Sn and on the support functionalization. PtSn/CNT−H2O2 electrocatalyst displays a high electrochemical surface area and enhanced catalytic activity for ethanol oxidation in comparison to other catalysts in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.