The grizzly bear (Ursus arctos ssp. horribilis) represents the largest population of brown bears in North America. Its genome was sequenced using a microfluidic partitioning library construction technique, and these data were supplemented with sequencing from a nanopore-based long read platform. The final assembly was 2.33 Gb with a scaffold N50 of 36.7 Mb, and the genome is of comparable size to that of its close relative the polar bear (2.30 Gb). An analysis using 4104 highly conserved mammalian genes indicated that 96.1% were found to be complete within the assembly. An automated annotation of the genome identified 19,848 protein coding genes. Our study shows that the combination of the two sequencing modalities that we used is sufficient for the construction of highly contiguous reference quality mammalian genomes. The assembled genome sequence and the supporting raw sequence reads are available from the NCBI (National Center for Biotechnology Information) under the bioproject identifier PRJNA493656, and the assembly described in this paper is version QXTK01000000.
The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon–gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.
While some species thrive in urban areas, many are absent from such environments. Those that are successful often have high behavioural flexibility that allows them to exploit new niches in a human-modified landscape. Northern myotis (Myotis septentrionalis) is an endangered bat species rarely identified in urban areas, though it is unclear whether this is due to absence or difficulties in surveying. We investigated the ecology of a population of northern myotis within Canada’s largest conurbation, including reproductive status, roosting preference, and movements. Using capture surveys, we confirmed the presence of reproductive females and healthy juveniles over two seasons. Using radio telemetry and acoustic surveys, we identified a cluster of tree roosts in the centre of the forest, and foraging areas concentrated around waterways within the bounds of the forest. These observations suggest the roosting and movement ecology of this population is similar to that observed for this species in rural environments, despite the urban surroundings. Our results suggest that northern myotis is not a synurbic species but can occur within urbanized environments when suitable habitat is available. We suggest that large forest patches with mature, interior forest cover are likely to be an important resource for northern myotis, and they will be vulnerable to the loss or fragmentation of these features in rapidly urbanizing landscapes. These findings are highly relevant to the ecology and preservation of northern myotis and present a case for greater consideration of this species in urban forests.
With many advancements, technologies are now capable of recording non-human animals’ location, heart rate, and movement, often using a device that is physically attached to the monitored animals. However, to our knowledge, there is currently no technology that is able to do this unobtrusively and non-invasively. Here, we review the history of technology for use with animals, recent technological advancements, current limitations, and a brief introduction to our proposed novel software. Canadian tech mogul EAIGLE Inc. has developed an artificial intelligence (AI) software solution capable of determining where people and assets are within public places or attractions for operational intelligence, security, and health and safety applications. The solution also monitors individual temperatures to reduce the potential spread of COVID-19. This technology has been adapted for use at the Toronto Zoo, initiated with a focus on Sumatran orangutans (Pongo abelii) given the close physical similarity between orangutans and humans as great ape species. This technology will be capable of mass data collection, individual identification, pose estimation, behaviour monitoring and tracking orangutans’ locations, in real time on a 24/7 basis, benefitting both zookeepers and researchers looking to review this information.
The endangered black-footed ferret (BFF; Mustela nigripes) is an important example of the benefits of assisted reproduction in species conservation with both semen evaluation and artificial insemination using fresh and frozen sperm being successfully incorporated into the breeding program. Currently, electroejaculation (EE) is routinely utilized for semen collection in BFFs, a technique that requires custom equipment and experienced operators, and does not consistently yield viable samples in this species. In this case study, we evaluated the feasibility of urethral catheterization (UC) for semen collection, a method predominately tested in domestic and non-domestic felids, on four occasions (three BFF males). After general anesthesia with a combination of ketamine, midazolam and α2-agonist dexmedetomidine (thought to promote semen release into the urethra), a lightly lubricated, flexible feeding tube was passed into the urethral opening and advanced ~7–8 cm into the urethra. A syringe attached to the feeding tube was used to apply mild negative pressure to collect sperm. Semen samples were successfully collected on all four attempts. Sperm characteristics ranged as follows: 10.5–26.0 × 106 sperm/ml concentration, 50–90% motility and 36–61% normal sperm morphology. This is the first report of the use of UC as a potential alternative to EE in the BFF, a more field-friendly technique that is less invasive and more consistent for obtaining samples free of urine contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.