Leucine (LEU) kinetics were assessed using a primed-continuous infusion of L-[1-14C]LEU in normal overnight-fasted male volunteers during a basal period and an experimental period where insulin (INS) was infused at either 0.6, 1.2, 2.5, 5.0, 10, or 20 mU.kg-1.min-1 with euglycemia maintained. Two protocols were used: 1) subjects were allowed to develop hypoaminoacidemia or 2) plasma essential amino acids (AA) were maintained near basal levels by frequently monitoring plasma LEU in conjunction with variable infusions of an AA solution (LEU infused = 0.41, 0.72, 0.93, 1.03, 1.31, and 1.35 mumol.kg-1.min-1 at escalating INS doses, respectively). Basal rates of LEU appearance (Ra), nonoxidative disappearance (NORd) and oxidative disappearance (OXRd) were similar in both protocols (means = 1.74, 1.40, and 0.36 mumol.kg-1.min-1, respectively). INS infusions without AA resulted in a progressive decrement in LEU Ra (14 to 45%), NORd (16-41%), and OXRd (3-56%) compared with basal values. The infusion of AA resulted in an additional reduction in endogenous Ra (P less than 0.01; approximately 100% suppression achieved at plasma INS greater than 1,000 microU/ml) and a blunting of NORd reduction (P less than 0.05) at each dose of INS. Observed differences in INS's suppression of LEU Ra between the two protocols suggests the existence of a component of whole body proteolysis that is highly dependent on circulating plasma AA. Therefore, hypoaminoacidemia associated with INS treatment would appear to blunt the responsiveness of INS's suppression of protein breakdown and in the presence of near basal plasma AA, proteolytic suppression by INS is enhanced.
The findings indicate that MAPK is constitutively expressed in leptomeningeal and meningioma cells and transduces mitogenic signals of PDGF, contributing to the growth of human meningiomas.
The present study examines the independent effects of amino acids and leucine in modulating insulin's effect on leucine kinetics in 24-h fasted conscious dogs during an experimental period where insulin was infused at 600 mU.kg-1.h-1. Group I (n = 7) received saline, group II (n = 10) received sequential infusions of L-leucine at 0, 1, 3, and 1 mumol.kg-1.min-1 each lasting for 90 min, and group III (n = 6) received L-amino acids with doses of L-leucine matching those of group II. Plasma leucine (mumol/l) was 120 +/- 5 basally and 135 +/- 23 and 129 +/- 12 during the infusion of 3.0 mumol.kg-1.min-1 in groups II and III compared with 40 +/- 3 in group I. Leucine rate of appearance (mumol.kg-1.min-1) was 3.5 +/- 0.3 during the basal period and was suppressed 80% in both groups II and III as compared with 40% in group I (P less than 0.01). Leucine oxidation (basal = 0.7 +/- 0.15 mumol.kg-1.min-1) dropped 20% in group I but increased to threefold basal in group II and twofold in group III (P less than 0.05). Nonoxidative rate of disposal (basal = 2.6 +/- 0.2 mumol.kg-1.min-1) dropped 25% in group I and 55% in group II but did not change in group III. These data show that, in addition to insulin, amino acids and particularly leucine cause a marked suppression of proteolysis. Availability of all amino acids to prevent hypoaminoacidemia is necessary to sustain basal rates of protein synthesis. The infusion of leucine alone resulted in significant stimulation of leucine oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.