The use of the [Fe(III) (AA)(CN)4](-) complex anion as metalloligand towards the preformed [Cu(II) (valpn)Ln(III)](3+) or [Ni(II) (valpn)Ln(III) ](3+) heterometallic complex cations (AA=2,2'-bipyridine (bipy) and 1,10-phenathroline (phen); H2 valpn=1,3-propanediyl-bis(2-iminomethylene-6-methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[Cu(II) (valpn)Ln(III) (H2O)3 (μ-NC)2 Fe(III) (phen)(CN)2 {(μ-NC)Fe(III) (phen)(CN)3}]NO3 ⋅7 H2O}n (Ln=Gd (1), Tb (2), and Dy (3)) and the trinuclear complex [Cu(II) (valpn)La(III) (OH2 )3 (O2 NO)(μ-NC)Fe(III) (phen)(CN)3 ]⋅NO3 ⋅H2O⋅CH3 CN (4) were obtained with the [Cu(II) (valpn)Ln(III)](3+) assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[Ni(II) (valpn)Ln(III) (ONO2 )2 (H2 O)(μ-NC)3 Fe(III) (bipy)(CN)]⋅2 H2 O⋅2 CH3 CN}n (Ln=Gd (5), Tb (6), and Dy (7)) resulted with the related [Ni(II) (valpn)Ln(III) ](3+) precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [Cu(II) (valpn)La(III) (OH2)3 (O2 NO)(μ-NC)Fe(III) (phen)(CN)3 ](+), nitrate counterions, and non-coordinate water and acetonitrile molecules. The heteroleptic {Fe(III) (bipy)(CN)4} moiety in 5-7 acts as a tris-monodentate ligand towards three {Ni(II) (valpn)Ln(III)} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the Cu(II)-Ln(III) (1-3) and Ni(II)-Ln(III) (5-7) units, as well as through the single cyanide bridge between the Fe(III) and either Ni(II) (5-7) or Cu(II) (4) account for the overall ferromagnetic behavior observed in 1-7. DFT-type calculations were performed to substantiate the magnetic interactions in 1, 4, and 5. Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out-of-phase ac signals below 4.0 K in the lack of a dc field, the values of the pre-exponential factor (τo) and energy barrier (Ea ) through the Arrhenius equation being 2.0×10(-12) s and 29.1 cm(-1), respectively. In the case of 7, the ferromagnetic interactions through the double phenoxo (Ni(II)-Dy(III)) and single cyanide (Fe(III)-Ni(II)) pathways are masked by the depopulation of the Stark levels of the Dy(III) ion, this feature most likely accounting for the continuous decrease of χMT upon cooling observed for this last compound.
Three families of heterotrimetallic chains (type 1-type 3), with different topologies, have been obtained by reacting the 3d-4f complexes, [{Cu(L(1))}xLn(NO3)3] with x = 1 or 2, formed in situ by the reaction of Schiff-base bi-compartmental [Cu(II)(L(1))] complexes and lanthanide(iii) salts, with (NHBu3)3[M(CN)8] (M = Mo(V), W(V)). For type 1 series of compounds, 1-D coordination polymers, with the general formula [{Cu2(valpn)2Ln}{M(CN)8}]·nH2O·mCH3CN (where H2valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol), result from the association of trinuclear {CuLn(III)} moieties and [M(V)(CN)8](3-) anions acting as tri-connecting spacers [Ln = La (1), Ce (2), Eu (3), Tb (4), Ho (5), M = Mo; Ln = Tb (6), Ho (7), M = W; m = 0, n = 1.5 (7) and 2 (1-4, 6); n = 1, m = 1 (5)]. The type 2 family has the general formula [{Cu(valdp)Ln(H2O)4}{M(CN)8}]·2H2O·CH3CN (where H2valdp = 1,2-propanediylbis(2-iminomethylene-6-methoxy-phenol)) and also consists of heterotrimetallic chains involving binuclear {Cu(II)Ln(III)} units linked to [M(CN)8](3-) anions coordinating through two cyano groups [Ln = Gd (8), Tb (9), Dy (10); M = Mo; Ln = La (11), Gd (12), Tb (13), Dy (14); M = W]. With large Ln(III) ions (La(III) and Pr(III)), the type 3 family of heterotrimetallic compounds are assembled: [{Cu2(valdp)2Ln(H2O)4}{Mo(CN)8}]·nCH3OH·mCH3CN, n, m = 0, Ln = La (15); n = m = 1, Pr (16), in which the trinuclear {CuLn(III)} nodes are connected to [Mo(V)(CN)8](3-) anions that act as tetra-connecting spacers. For Tb(III) derivatives of the type 1 (compounds 4 and 6), the DC magnetic properties indicate a predominant ferromagnetic Cu(II)-Tb(III) interaction, while the AC magnetic susceptibility (in the presence of a static magnetic field, HDC = 3000 Oe) emphasize the slow relaxation of the magnetization (Ueff/kB = 20.55 K and τ0 = 5.5 × 10(-7) s for compound 4, Ueff/kBT = 15.1 K and τ0 = 1.5 × 10(-7) s for compound 6). A predominant ferromagnetic Cu(II)-Ln(III) interaction was also observed in the type 2 series (compounds 8-10 and 12-14) as a result of the magnetic coupling between copper(ii) and lanthanide(iii) ions via the phenoxo-bridge. The magnetic behavior for the La(III) derivatives reveals that weak ferromagnetic interactions are also operative between the Cu(II) and the 4d/5d centers.
Three isomorphous two-dimensional (2D) coordination polymers of general formula {[Ni(II)(valpn)Ln(III)(NO3)(H2O)(μ-NC)4W(IV)(bipy)(CN)2]·xH2O·yCH3CN}n have been synthesized by reacting Ph4P[W(V)(CN)6(bipy)] with the heterodinuclear [Ni(II)Ln(III)(valpn)(O2NO)3] complexes [H2valpn = 1,3-propanediyl-bis(2-iminomethylene-6-methoxyphenol), bipy = 2,2'-bipyridine, and Ln = Gd (1), Dy (2), and Tb (3) with x = 2 (1), 3.9 (2), and 3.35 (3) and y = 2.50 (1), 2 (2), and 1.8 (3)]. Their crystal structures consist of [Ni(II)Ln(III)] 3d-4f nodes which are connected by [W(IV)(bipy)(CN)6](2-) diamagnetic linkers resulting from the reduction of W(V) to W(IV) during the reaction process. The Ni(II) and Ln(III) ions occupy the inner and outer coordination sites of the dideprotonated valpn ligand, respectively, and they are doubly bridged by the phenoxo oxygen atoms of such a ligand. The value of Ni(II)···Ln(III) separation through this bridge is 3.4919(10) (1), 3.4760(10) (2), and 3.4799(9) (3) Å, and those of the angles at the bridgehead phenoxo atoms are 106.6(2) and 107.3(2) (1), 106.9(2), and 107.8(2) (2) and 106.5(2)-106.8(2)° (3). Each W(IV) is eight-coordinated with a bidentate bipy molecule and six cyanide-carbon atoms building a somewhat distorted square antiprism environment. The rare-earth cations are nine-coordinated, the donor atoms describing a monocapped square antiprism for 1 and 3 and a tricapped trigonal prism for 2. Magnetic susceptibility measurements in the temperature range 1.9-300 K show the occurrence of ferromagnetic interactions between the Ni(II) and Ln(III) ions in 1-3. Frequency-dependent alternating susceptibility signals were observed for the Dy(III) derivative below 8.0 K under an applied dc field of 2500 G indicating the presence of slow magnetic relaxation with values of the pre-exponential factor (τ0) and energy barrier (E(#)) of ca. 5.7 × 10(-8) s and 15.9 cm(-1), respectively. Complex 2 constitutes the first example of a 2D 3d-4f heterobimetallic single molecule magnet (SMM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.