The milk fat globule membrane (MFGM) is the membrane surrounding lipid droplets during their secretion in the alveolar lumen of the lactating mammary gland. MFGM proteins represent only 1-4% of total milk protein content; nevertheless, the MFGM consists of a complex system of integral and peripheral proteins, enzymes, and lipids. Despite their low classical nutritional value, MFGM proteins have been reported to play an important role in various cellular processes and defense mechanisms in the newborn. Using a proteomic approach, such as high-resolution, two-dimensional electrophoresis followed by direct protein identification by mass spectrometry, it has been possible to comprehensively characterize the subcellular organization of MFGM. This chapter covers the description of MFGM proteomics from the first studies about 10 years ago through the most recent papers. Most of the investigations deal with MFGMs from human and cow milk.
Microbial deterioration accounts for a significant percentage of the degradation processes that occur on archeological/historical objects and artworks, and identifying the causative agents of such a phenomenon should therefore be a priority, in consideration of the need to conserve these important cultural heritage items. Diverse microbiological approaches, such as microscopic evaluations, cultural methods, metabolic- and DNA-based techniques, as well as a combination of the aforementioned methods, have been employed to characterize the bacterial, archaeal, and fungal communities that colonize art objects. The purpose of the present review article is to report the interactions occurring between the microorganisms and nutrients that are present in stones, bones, wood, paper, films, paintings, and modern art specimens (namely, collagen, cellulose, gelatin, albumin, lipids, and hydrocarbons). Some examples, which underline that a good knowledge of these interactions is essential to obtain an in depth understanding of the factors that favor colonization, are reported. These data can be exploited both to prevent damage and to obtain information on historical aspects that can be decrypted through the study of microbial population successions.
The major protein allergen of peach (Prunus persica), Pru p 1, has recently been identified as a lipid transfer protein (LTP). The complete primary structure of Pru p 1, obtained by direct amino acid sequence and liquid chromatography-mass spectrometry (LC-MS) analyses with the purified protein, is described here. The protein consists of 91 amino acids with a calculated molecular mass of 9178 Da. The amino acid sequence contains eight strictly conserved cysteines, as do all known LTPs, but secondary structure predictions failed to classify the peach 9 kDa protein as an 'all-alpha type', due to the high frequency of amino acids (nine prolines) disrupting alpha helices. Although the sequence similarity with maize LTP is only 63%, out of the 25 amino acids forming the inner surface of the tunnel-like hydrophobic cavity in maize ns-LTP 16 are identical and 7 similar in the peach homolog, supporting the hypothesis of a similar function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.