The bonding situation of some exemplary noble-gas (Ng) compounds, including HNg(+), HNgF, FNgO(-), Ng-HF, and NgBeO (Ng = He-Xe) was assayed by examining their local electron energy density H(r). In general, this function partitions the space of atomic species (neutral and ionic) into inner regions of negative values and outer regions of positive values. In the formation of chemical bonds, these atomic regions combine so to form a molecular H(r), Hmol(r), whose plotted form naturally shows the "covalent" and "noncovalent" regions of the molecular species and allows also the recognition of different types of noncovalent interactions such van der Waals, hydrogen, and ionic or partially ionic bonds. The qualitative assignment of the various bonding motifs is corroborated by the topological analysis of Hmol(r), which typically includes several critical points of rank 3 and variable signature. These points are, in particular, characterized here in terms of their bond degree (BD). From a previous definition (Espinosa J. Chem. Phys. 2002, 117, 5529-5542), this quantity is taken as the ratio between the energy density calculated at the critical point of H(r), H(rc), and the corresponding electron density ρ(rc): BD = -H(rc)/ρ(rc). Thus, the BD is positive for covalent interactions (H(rc) < 0) and negative for noncovalent interactions (H(rc) > 0). For structurally related species, the BD result, in general, positively correlated with the binding energies and is, therefore, a semiquantitative index of stability. The present study suggests the general validity of the Hmol(r) to effectively assay the bonding motifs of noble-gas compounds.
Theoretical calculations at the B3LYP, MP2, and CCSD(T) levels of theory disclose the conceivable existence of cationic noble gas hydrides containing two Ng atoms. These species have a general formula of HNgFNgH(+) (Ng = He-Xe), and are the cationic counterparts of the neutral HNgF. The optimized geometries, harmonic frequencies, and bonding properties point to ion-dipole complexes between a fluoride anion and two covalent H-Ng(+) cations, best formulated as (H-Ng(+))(2)F(-). The HXeFXeH(+) is also isoelectronic with the recently experimentally observed HXeOXeH (Khriachtchev et al. J. Am. Chem. Soc. 2008, 130, 6114-6118). The resulting HNgFNgH(+) are thermochemically stable with respect to dissociation into HNg(+) + HNgF and HNg(+) + H + Ng + F, but are largely unstable with respect to both the loss of HF (with formation of HNg(+) + Ng) and H(2)F(+) (with formation of two Ng atoms). These decompositions pass through bent transition structures, and only the heaviest HArFArH(+), HKrFKrH(+), and HXeFXeH(+) are protected by energy barriers large enough (ca. 10-15 kcal mol(-1)) to support their conceivable metastability. In line with other series of noble gas compounds, the neon cation HNeFNeH(+) is the least stable among the various HNgFNgH(+).
The structure, harmonic frequencies, enthalpies of formation, and dissociation energies of the GeF(n)(+) cations (n = 1-3) and of their neutral counterparts GeF(n) have been investigated at the MP2 and CCSD(T) levels of theory and discussed in connection with previous experimental and theoretical data. The CCSD(T,full)/cc-pVTZ-optimized geometries and MP2(full)/6-311G(d) harmonic frequencies are 1.744 A and 668.0 cm(-1) for GeF((2)Pi), 1.670 A and 798.6 cm(-1) for GeF(+)((1)Sigma(+)), 1.731 A/97.4 degrees and 267.0 (a(1))/673.1 (b(2))/690.6 (a(1)) cm(-1) for GeF(2)(C(2)(v),(1)A(1)), 1.666 A/116.9 degrees and 202.3 (a(1))/769.6 (a(1))/834.6 (b(2)) cm(-1) for GeF(2)(+)(C(2)(v),(2)A(1)), 1.706 A/112.2 degrees and 214.4 (e)/273.1 (a(1))/699.6 (a(1))/734.1 (e) cm(-1) for GeF(3)(C(3)(v),(2)A(1)), and 1.644 A and 211.4 (e')/229.9 (a(2)' ')/757.4 (a(1)')/879.3 (e') cm(-1) for GeF(3)(+)(D(3)(h),(1)A(1)). These calculated values are in excellent agreement with the experimental data reported for GeF, GeF(+), and GeF(2), and should be therefore of good predictive value for the still unexplored GeF(2)(+), GeF(3), and GeF(3)(+). The comparison of the CCSD(T,full)/cc-pVTZ enthalpies of formation at 298.15 K, -11.6 (GeF), -125.9 (GeF(2)), -180.4 (GeF(3)), 158.4 (GeF(+)), 134.1 (GeF(2)(+)), and 44.8 (GeF(3)(+)) kcal mol(-1), with the available experimental data, especially for the cations, shows discrepancies which suggest the need for novel and more refined measurements. On the other hand, the computed adiabatic ionization potentials of GeF, 7.3 eV, GeF(2), 11.2 eV, and GeF(3), 9.7 eV, are in good agreement with the available experimental estimates.
The xenon-difluoronitrenium ion F(2)N-Xe(+) , a novel xenon-nitrogen species, was obtained in the gas phase by the nucleophilic displacement of HF from protonated NF(3) by Xe. According to Møller-Plesset (MP2) and CCSD(T) theoretical calculations, the enthalpy and Gibbs energy changes (ΔH and ΔG) of this process are predicted to be -3 kcal mol(-1) . The conceivable alternative formation of the inserted isomers FN-XeF(+) is instead endothermic by approximately 40-60 kcal mol(-1) and is not attainable under the employed ion-trap mass spectrometric conditions. F(2)N-Xe(+) is theoretically characterized as a weak electrostatic complex between NF(2)(+) and Xe, with a Xe-N bond length of 2.4-2.5 Å, and a dissociation enthalpy and free energy into its constituting fragments of 15 and 8 kcal mol(-1), respectively. F(2)N-Xe(+) is more fragile than the xenon-nitrenium ions (FO(2)S)(2)NXe(+), F(5)SN(H)Xe(+), and F(5)TeN(H)Xe(+) observed in the condensed phase, but it is still stable enough to be observed in the gas phase. Other otherwise elusive xenon-nitrogen species could be obtained under these experimental conditions.
The structure and stability of FXeGeF and FXeGeF3 were investigated by MP2, CCSD(T), and B3LYP calculations, and their bonding situation was examined by NBO and AIM analysis. These molecules are thermochemically stable with respect to dissociation into F + Xe + GeF(n) (n = 1, 3), and kinetically stable with respect to dissociation into Xe + GeF(n+1), thus suggesting their conceivable existence as metastable species. FXeGeF and FXeGeF3 are best described by the resonance structures F(-)(Xe-GeF(+)) and F(-)(Xe-GeF3(+)), and feature essentially ionic xenon-fluorine interactions. The xenon-germanium bonds have instead a significant contribution of covalency. The comparison with XeGeF(+) and XeGeF3(+) suggests that the stability of FXeGeF and FXeGeF3 arises from the F(-)-induced stabilization of these ionic moieties. This structural motif resembles that encountered in other noble-gas neutral and ionic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.