Neutrophil/lymphocyte (NLR) and platelet/lymphocyte (PLR) ratios might represent a yet unrecognized risk factor for venous thromboembolism (VTE) in cancer out-patients receiving chemotherapy. Accordingly, this study was aimed at analyzing the significance of these novel markers in the risk prediction of a first VTE episode in a population representative of a general practice cohort. To this purpose, a mono-institutional cohort study was conducted to retrospectively analyze NLR and PLR in 810 consecutive cancer out-patients with primary or relapsing solid cancer at the start of a new chemotherapy regimen. Over a median follow-up of 9.2 months, VTE occurred in 6.7% of patients. Incidental VTE was diagnosed at time of restaging in 47% of cases. Median pre-chemotherapy NLR (p 5 0.015) and PLR (p 5 0.040) were significantly higher in patients with intermediate risk class who developed symptomatic VTE with a twofold increased VTE risk for both inflammation-based markers (NLR: p 5 0.022; PLR: p 5 0.037) and a worst 1-year VTE-free survival for patients with high NLR or PLR. However, only PLR (HR 5 2.4, p 5 0.027) confirmed to be an independent predictor of future VTE in patients in the intermediate risk class in multivariate analysis, together with ECOG performance status (HR 5 3.4, p 5 0.0002) and bevacizumab use (HR 5 4.7, p 5 0.012). We may, thus, conclude that PLR, but to a lesser extent NLR, could represent useful clinical predictors of VTE, especially in selected categories of patients such as those in the intermediate risk class in whom the assessment of PLR could allow a better risk stratification of VTE without additional costs to the national health systems.Cancer patients have a four to sixfold higher risk of venous thromboembolism (VTE) compared to the general population, the factors being patient-, cancer-or treatment-related and the pathophysiology classically dependent on the Virchow triad.
We report a preliminary experience of adjuvant therapy with Hemoperfusion (HP) in patients with Severe Acute Respiratory Syndrome-CoronaVirus 2 (SARS-CoV2) pneumonia. Currently, there are no approved treatments for CoronaVirus Disease 19 (COVID-19); however, therapeutic strategies based on the preclinical evidence include supportive measures, such as oxygen supplementation, antiviral, and anticoagulant agents. Despite these treatments, 10% of patients worsen and develop severe acute respiratory distress syndrome (ARDS). Since the pathogenic mechanism of ARDS is an uncontrolled inflammatory state, we speculate that removing inflammation effectors from blood may contrast tissue injury and improve clinical outcome. In a scenario of dramatic medical emergency, we conducted an observational study on 9 consecutive patients hospitalized in COVID Intensive Care Unit, where 5 of 9 consecutive patients were treated with HP, due to the emergency overload made it impossible to deliver blood purification in the other 4 patients. COVID-19 was diagnosed through the identification of virus sequences by reverse transcription-PCR on respiratory specimens. All patients had severe pneumonia requiring continuous positive airway pressure. HP was started in all patients 6–7 days after hospital admission. The treated patients (T) received 2 consecutive sessions of HP using CytoSorb cartridge. Our results show a better clinical course of T compared to control patients (C), in fact all T except 1 survived, and only 2 of them were intubated, while all C required intubation and died. Lymphocytopenia worsened in C but not in T. C-reactive protein decreased in both patients, but to a greater extent in T. IL-6, IL-8, and TNF-α decreased after HP, IL-10 did not change. Respiratory function remained stable and did not worsen in T compared to C. The limited sample size and observational study design preclude a sound statement about the potential effectiveness of HP in COVID-19 patients, but our experience suggests a potential therapeutic role of adjuvant CytoSorb HP in the early course of COVID-19 pneumonia. A randomized clinical trial is ongoing.
Although Rett syndrome (RTT) represents one of the most frequent forms of severe intellectual disability in females worldwide, we still have an inadequate knowledge of the many roles played by MeCP2 (whose mutations are responsible for most cases of RTT) and their relevance for RTT pathobiology. Several studies support a role of MeCP2 in the regulation of synaptic plasticity and homeostasis. At the molecular level, MeCP2 is described as a repressor capable of inhibiting gene transcription through chromatin compaction. Indeed, it interacts with several chromatin remodeling factors, such as HDAC-containing complexes and ATRX. Other studies have inferred that MeCP2 functions also as an activator; a role in regulating mRNA splicing and in modulating protein synthesis has also been proposed. Further, MeCP2 avidly binds both 5-methyl- and 5-hydroxymethyl-cytosine. Recent evidence suggests that it is the highly disorganized structure of MeCP2, together with its post-translational modifications (PTMs) that generate and regulate this functional versatility. Indeed, several reports have demonstrated that differential phosphorylation of MeCP2 is a key mechanism by which the methyl binding protein modulates its affinity for its partners, gene expression and cellular adaptations to stimuli and neuronal plasticity. As logic consequence, generation of phospho-defective Mecp2 knock-in mice has permitted associating alterations in neuronal morphology, circuit formation, and mouse behavioral phenotypes with specific phosphorylation events. MeCP2 undergoes various other PTMs, including acetylation, ubiquitination and sumoylation, whose functional roles remain largely unexplored. These results, together with the genome-wide distribution of MeCP2 and its capability to substitute histone H1, recall the complex regulation of histones and suggest the relevance of quickly gaining a deeper comprehension of MeCP2 PTMs, the respective writers and readers and the consequent functional outcomes.
Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-kB p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-kB pathway, and in particular by p65 acetylation, and subsequent NF-kB-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.