High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive form of epithelial ovarian cancer, for which few targeted therapies exist. To search for new therapeutic target proteins, we performed an in vivo shRNA screen using an established human HGSOC cell line growing either subcutaneously or intraperitoneally in immunocompromised mice. We identified genes previously implicated in ovarian cancer such as AURKA1, ERBB3, CDK2, and mTOR, as well as several novel candidates including BRD4, VRK1, and GALK2. We confirmed, using both genetic and pharmacologic approaches, that the activity of BRD4, an epigenetic transcription modulator, is necessary for proliferation/survival of both an established human ovarian cancer cell line (OVCAR8) and a subset of primary serous ovarian cancer cell strains (DFs). Among the DFs tested, the strains sensitive to BRD4 inhibition revealed elevated expression of either MYCN or c-MYC, with MYCN expression correlating closely with JQ1 sensitivity. Accordingly, primary human xenografts derived from high-MYCN or c-MYC strains exhibited sensitivity to BRD4 inhibition. These data suggest that BRD4 inhibition represents a new therapeutic approach for MYC-overexpressing HGSOCs.ovarian cancer | in vivo screen | targeted therapy | BRD4 | MYCN
Activating mutations in RAS protooncogenes are associated with several different histotypes of thyroid cancer, including anaplastic thyroid carcinoma. The latter is the most aggressive cancer of the thyroid gland, showing little or no expression of the differentiated phenotype. Likewise, expression of viral RAS oncogenes in FRTL-5 rat thyroid cells mimics such loss of differentiation. We established FRTL-5 cell lines stably expressing constitutively active forms of RAS, either of viral (v-Ha-RAS or v-Ki-RAS) or cellular (H-RAS(V12)) origin and generated a tamoxifen-inducible RAS oncoprotein to analyze the timing of RAS effects on thyroid differentiation. In RAS-transformed FRTL-5 cells, we measured the expression of many thyroid-specific genes by real-time PCR and observed that a clear loss of differentiation was only obtained in the presence of high RAS oncogene expression. In contrast, TSH-independent growth appeared to be induced in the presence of both low and high levels of oncogenic RAS expression. We also showed that inhibition of differentiation is an early RAS-induced phenomenon. Finally, we demonstrated that only high doses of RAS oncogenes are able to inhibit the activity of Titf1 and Pax8, two transcription factors essential for the maintenance of thyroid differentiation, and that the homeodomain of Titf1 is a target of the inhibitory action of RAS. Our results represent the first evidence of a dose-dependent effect of RAS oncogenes on thyroid epithelial differentiation.
Among the approaches used to provide a functional inactivation of a target protein, we have chosen the recently described oligomerization chain reaction (OCR) strategy to functionally inactivate the transcription factor Pax8, a member of the Pax gene family expressed in thyroid cells. The OCR strategy is based on the fusion of the self-associating coiled-coil (CC) domain of the nuclear factor promyelocytic leukemia (PML) to target proteins that are able to self-associate naturally or that form heterocomplexes. In the thyroid tissue, the transcription factor Pax8 is involved in the morphogenesis of the gland and in the transcriptional regulation of thyroid-expressed genes. We have recently demonstrated that in thyroid cells Pax8 interacts biochemically and functionally with the transcription factor TTF-1 (thyroid transcription factor 1), and that such interaction leads to the synergistic activation of thyroglobulin (Tg) gene expression. Fusion of the CC domain to Pax8 leads to the formation of aberrant, nonfunctional high-molecular mass complexes to which TTF-1 is also recruited. The CC-Pax8 chimera inhibits the transcriptional activity of Pax8 and of TTF-1 on both synthetic and physiological promoters and prevents the synergistic activation of the Tg promoter mediated by these two transcription factors. Furthermore, the expression of the CC-Pax8 chimera in differentiated thyroid cells leads to the down-regulation of the endogenous expression of several differentiation markers such as Tg, sodium/iodide symporter, Foxe1, TTF-1, and thyroid oxidase 2. These results demonstrate that the OCR is a useful tool to functionally inactivate a transcription factor. Moreover, by this approach, we identified Foxe1, TTF-1, and thyroid oxidase 2 as new direct targets of Pax8 or TTF-1.
OrIgInAl ArTIclE Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.