A 1.6-kilobase pair full-length cDNA encoding a transcription factor homologous to the Maf family of proteins was isolated by screening a K562 cDNA library with the NFE2 tandem repeat probe derived from the globin locus control region. The protein, which was designated hMAF, contains a basic DNA binding domain and an extended leucine zipper but lacks any recognizable activation domain. Expressed in vitro, the hMAF protein is able to homodimerize in solution and bandshift the NFE2 tandem repeat probe. In addition to homodimers, hMAF can also form high affinity heterodimers with two members of the NFE2/CNC-bZip family (Nrf1 and Nrf2) but not with a third family member, p45-NFE2. Although hMAF/hMAF homodimers and hMAF/Nrf1 and hMAF/Nrf2 heterodimers bind to the same NFE2 site, they exert functionally opposite effects on the activity of a linked ␥-globin gene. In fact, whereas all hMAF/CNC-bZip heterodimers stimulate the activity of a ␥-promoter reporter construct in K562 cells, the association into homodimers that is induced by overexpressing hMAF inhibits the activity of the same construct. Thus variations in the expression of hMAF may account for the modulation in the activity of the genes that bear NFE2 recognition sites.In the last decade, meticulous searches along the -globin gene cluster have led to the identification of numerous regulatory DNA sequences located either in close proximity to the genes or at a distance in regions that were originally identified for their DNase I hypersensitivity (1-3). The latter regions, which are referred to individually as hypersensitive sites (from 5Ј-HS1 to HS4) and collectively as the locus control region of the -globin gene cluster (4), contain elements with different functions such as enhancers (5-8), silencers (9, 10), origins of replication (11-13), and putative insulators (14). By a series of structural and functional experiments based on DNA-protein interactions (15-23) as well as selective mutagenesis and expression studies in cell lines and transgenic mice (17,18,(22)(23)(24)(25)(26)(27), several short DNA consensus sequences have been identified to bind regulatory proteins that represent the effectors of the activities ascribed to the locus control region. One such sequence (TGAGTCA) that is repeated twice in the core of the HS2 enhancer is recognized by proteins of the AP1 (28), cAMPresponsive element-binding protein, and NFE2/CNC-bZip families of transcription factors (29,30) and is known as the NFE2/ AP1 consensus sequence. As the latter motif is frequently found along the globin clusters in DNA elements with enhancer activity, cloning p45-NFE2 (31-33) has raised much interest as it could provide useful insights on the transcription factor enhancement of the globin gene expression, which in turn might lead to novel therapeutic approaches for inherited hemoglobin diseases such as sickle cell and thalassemia syndromes.Soon after the cloning of NFE2, we and others have cloned two more genes, NRF1 (also known as LCR-F1 and TCF11) (34 -36) and NRF2 (37), which is...
ObjectivesVaccination against COVID-19 is highly recommended to patients affected by multiple sclerosis (MS); however, the impact of MS disease-modifying therapies (DMTs) on the immune response following vaccination has been only partially investigated. Here, we aimed to elucidate the effect of DMTs on the humoral immune response to mRNA-based anti-SARS-CoV-2 vaccines in MS patients.MethodsWe obtained sera from 912 Sardinian MS patients and 63 healthy controls 30 days after the second dose of BNT162b2 vaccine and tested them for SARS-CoV-2 response using anti-Spike (S) protein-based serology. Previous SARS-CoV-2 infection was assessed by anti-Nucleocapsid (N) serology. Patients were either untreated or undergoing treatment with a total of 13 different DMTs. Differences between treatment groups comprised of at least 10 patients were assessed by generalized linear mixed-effects model. Demographic and clinical data and smoking status were analyzed as additional factors potentially influencing humoral immunity from COVID-19 vaccine.ResultsMS patients treated with natalizumab, teriflunomide, azathioprine, fingolimod, ocrelizumab, and rituximab showed significantly lower humoral responses compared to untreated patients. We did not observe a statistically significant difference in response between patients treated with the other drugs (dimethyl fumarate, interferon, alemtuzumab and glatiramer acetate) and untreated patients. In addition, older age, male sex and active smoking were significantly associated with lower antibody titers against SARS-CoV-2. MS patients previously infected with SARS-CoV-2 had significantly higher humoral responses to vaccine than uninfected patients.ConclusionHumoral response to BNT162b2 is significantly influenced by the specific DMTs followed by patients, as well as by other factors such as previous SARS-CoV-2 infection, age, sex, and smoking status. These results are important to inform targeted strategies to prevent clinically relevant COVID-19 in MS patients.
A key regulatory gene in definitive erythropoiesis is the erythroid Kruppel-like factor (Eklf or Klf1). Klf1 knockout (KO) mice die in utero due to severe anemia, while residual circulating red blood cells retain their nuclei. Dnase2a is another critical gene in definitive erythropoiesis. Dnase2a KO mice are also affected by severe anemia and die in utero. DNase II-alpha is expressed in the central macrophage of erythroblastic islands (CMEIs) of murine fetal liver. Its main role is to digest the DNA of the extruded nuclei of red blood cells during maturation. Circulating erythrocytes retain their nuclei in Dnase2a KO mice. Here, we show that Klf1 is expressed in CMEIs and that it binds and activates the promoter of Dnase2a. We further show that Dnase2a is severely downregulated in the Klf1 KO fetal liver. We propose that this downregulation of Dnase2a in the CMEI contributes to the Klf1 KO phenotype by a non-cell-autonomous mechanism.
The transcription factor NF-E2 (nuclear factor erythroid 2), interacting via DNA motifs within regulatory regions of several hematopoietic genes, is thought to mediate the enhancer activity of the globin locus control regions. By screening a human fetal liver cDNA library with probes derived from mouse NF-E2, we have isolated a splicing variant of the NF-E2 gene (fNF-E2) that differs in the 5' untranslated region from the previously reported cDNA (aNF-E2). The fNF-E2 isoform is transcribed from an alternative promoter located in the 3' end of the first intron and joined by alternative splicing to the second and third exons, which are shared by both RNA isoforms. Although the two forms produce the same protein, they are expressed in different ratios during development. fNF-E2 is more abundant in the fetal liver and less abundant in the adult bone marrow compared to the previously described form. Their distribution apparently follows the differential expression of fetal and adult hemoglobins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.