Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization.
Upon delivery, the neonate is exposed for the first time to a wide array of microbes from a variety of sources, including maternal bacteria. Although prior studies have suggested that delivery mode shapes the microbiota's establishment and, subsequently, its role in child health, most researchers have focused on specific bacterial taxa or on a single body habitat, the gut. Thus, the initiation stage of human microbiome development remains obscure. The goal of the present study was to obtain a community-wide perspective on the influence of delivery mode and body habitat on the neonate's first microbiota. We used multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities from mothers and their newborn babies, four born vaginally and six born via Cesarean section. Mothers’ skin, oral mucosa, and vagina were sampled 1 h before delivery, and neonates’ skin, oral mucosa, and nasopharyngeal aspirate were sampled <5 min, and meconium <24 h, after delivery. We found that in direct contrast to the highly differentiated communities of their mothers, neonates harbored bacterial communities that were undifferentiated across multiple body habitats, regardless of delivery mode. Our results also show that vaginally delivered infants acquired bacterial communities resembling their own mother's vaginal microbiota, dominated by Lactobacillus , Prevotella, or Sneathia spp., and C-section infants harbored bacterial communities similar to those found on the skin surface, dominated by Staphylococcus , Corynebacterium , and Propionibacterium spp. These findings establish an important baseline for studies tracking the human microbiome's successional development in different body habitats following different delivery modes, and their associated effects on infant health.
A primary aim of microbial ecology is to determine patterns and drivers of community distribution, interaction, and assembly amidst complexity and uncertainty. Microbial community composition has been shown to change across gradients of environment, geographic distance, salinity, temperature, oxygen, nutrients, pH, day length, and biotic factors 1-6 . These patterns have been identified mostly by focusing on one sample type and region at a time, with insights extra polated across environments and geography to produce generalized principles. To assess how microbes are distributed across environments globally-or whether microbial community dynamics follow funda mental ecological 'laws' at a planetary scale-requires either a massive monolithic cross environment survey or a practical methodology for coordinating many independent surveys. New studies of microbial environments are rapidly accumulating; however, our ability to extract meaningful information from across datasets is outstripped by the rate of data generation. Previous meta analyses have suggested robust gen eral trends in community composition, including the importance of salinity 1 and animal association 2 . These findings, although derived from relatively small and uncontrolled sample sets, support the util ity of meta analysis to reveal basic patterns of microbial diversity and suggest that a scalable and accessible analytical framework is needed.The Earth Microbiome Project (EMP, http://www.earthmicrobiome. org) was founded in 2010 to sample the Earth's microbial communities at an unprecedented scale in order to advance our understanding of the organizing biogeographic principles that govern microbial commu nity structure 7,8 . We recognized that open and collaborative science, including scientific crowdsourcing and standardized methods 8 , would help to reduce technical variation among individual studies, which can overwhelm biological variation and make general trends difficult to detect 9 . Comprising around 100 studies, over half of which have yielded peer reviewed publications (Supplementary Table 1), the EMP has now dwarfed by 100 fold the sampling and sequencing depth of earlier meta analysis efforts 1,2 ; concurrently, powerful analysis tools have been developed, opening a new and larger window into the distri bution of microbial diversity on Earth. In establishing a scalable frame work to catalogue microbiota globally, we provide both a resource for the exploration of myriad questions and a starting point for the guided acquisition of new data to answer them. As an example of using this Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of r...
Early childhood is a critical stage for the foundation and development of both the microbiome and host. Early-life antibiotic exposures, cesarean section, and formula feeding could disrupt microbiome establishment and adversely affect health later in life. We profiled microbial development during the first two years of life in a cohort of 43 US infants, and identify multiple disturbances associated with antibiotic exposures, cesarean section, and diet. Antibiotics delayed microbiome development and suppressed Clostridiales, including Lachnospiraceae. Cesarean section led to depleted Bacteroidetes populations, altering establishment of maternal bacteria. Formula-feeding was associated with age-dependent diversity deviations. These findings illustrate the complexity of early-life microbiome development, and microbiota disturbances with antibiotic use, cesarean section, and formula feeding that may contribute to obesity, asthma, and other disorders.
Humans have co-speciated with their gut-resident microbes, but it is difficult to infer features of our ancestral microbiome. Here, we examine the microbiome profile of 350 stool samples collected longitudinally for over a year from the Hadza hunter-gatherers of Tanzania. The data reveal annual cyclic reconfiguration of the microbiome, in which some taxa become undetectable only to reappear in a subsequent season. Comparison of the Hadza dataset with data collected from 18 populations in 16 countries with varying lifestyles reveals that gut community membership corresponds to modernization: Notably, the taxa within the Hadza that are the most seasonally volatile similarly differentiate industrialized and traditional populations. These data indicate that some dynamic lineages of microbes have decreased in prevalence and abundance in modernized populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.