A B S T R A C TInterferon-induced transmembrane proteins IFITM1 and IFITM3 (IFITM1/3) play a role in both RNA viral restriction and in human cancer progression. Using immunohistochemical staining of FFPE tissue, we identified subgroups of cervical cancer patients where IFITM1/3 protein expression is inversely related to metastasis. Guide RNA-CAS9 methods were used to develop an isogenic IFITM1/IFITM3 double null cervical cancer model in order to define dominant pathways triggered by presence or absence of IFITM1/3 signalling. A pulse SILAC methodology identified IRF1, HLA-B, and ISG15 as the most dominating IFNγ inducible proteins whose synthesis was attenuated in the IFITM1/IFITM3 double-null cells. Conversely, SWATH-IP mass spectrometry of ectopically expressed SBP-tagged IFITM1 identified ISG15 and HLA-B as dominant co-associated proteins. ISG15ylation was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. Proximity ligation assays indicated that HLA-B can interact with IFITM1/3 proteins in parental SiHa cells. Cell surface expression of HLA-B was attenuated in IFNγ treated IFITM1/IFITM3 double-null cells. SWATH-MS proteomic screens in cells treated with IFITM1-targeted siRNA cells resulted in the attenuation of an interferon regulated protein subpopulation including MHC Class I molecules as well as IFITM3, STAT1, B2M, and ISG15. These data have implications for the function of IFITM1/3 in mediating IFNγ stimulated protein synthesis including ISG15ylation and MHC Class I production in cancer cells. The data together suggest that pro-metastatic growth associated with IFITM1/3 negative cervical cancers relates to attenuated expression of MHC Class I molecules that would support tumor immune escape.Abbreviations: B2M, beta-2-microglobulin; FASP, filter-aided sample preparation; FA, formic acid; HLA, human leucocyte antigen; IFN, interferon; IFITM1/3, interferon-induced transmembrane receptors 1 and 3; ISG15, interferon-stimulated gene 15; IRF1, interferon regulatory factor 1; MHC, major histocompatibility complex; MS, mass spectrometry; NMWCO, nominal molecular weight cut-off; PBS, phosphate-buffered saline; PLA, proximity ligation assay; RT, room temperature; SWATH-IP, SWATH immunoprecipitation; SBP, twin streptavidin binding protein; UPLC, ultra performance liquid chromatography ⁎ Corresponding authors at
Interferon (IFN)-related DNA damage resistant signature (IRDS) genes are a subgroup of interferon-stimulated genes (ISGs) found upregulated in different cancer types, which promotes resistance to DNA damaging chemotherapy and radiotherapy. Along with briefly discussing IFNs and signalling in this review, we highlighted how different IRDS genes are affected by viruses. On the contrary, different strategies adopted to suppress a set of IRDS genes (STAT1, IRF7, OAS family, and BST2) to induce (chemo- and radiotherapy) sensitivity were deliberated. Significant biological pathways that comprise these genes were classified, along with their frequently associated genes (IFIT1/3, IFITM1, IRF7, ISG15, MX1/2 and OAS1/3/L). Major upstream regulators from the IRDS genes were identified, and different IFN types regulating these genes were outlined. Functional interfaces of IRDS proteins with DNA/RNA/ATP/GTP/NADP biomolecules featured a well-defined pharmacophore model for STAT1/IRF7-dsDNA and OAS1/OAS3/IFIH1-dsRNA complexes, as well as for the genes binding to GDP or NADP+. The Lys amino acid was found commonly interacting with the ATP phosphate group from OAS1/EIF2AK2/IFIH1 genes. Considering the premise that targeting IRDS genes mediated resistance offers an efficient strategy to resensitize tumour cells and enhances the outcome of anti-cancer treatment, this review can add some novel insights to the field.
Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in endemic regions of northern Asia and central and northern Europe. Interferon induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as the West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show the most significant role being that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR–Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of co-culture assays suggest that TBEV might partially escape IFN- and IFITM-mediated suppression during high-density co-culture infection when the virus enters naïve cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. Importance: TBEV infection may result in encephalitis, chronic illness or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new endemic centers arise. Although effective TBEV vaccines have been approved, vaccination coverage is low, and, due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. The IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies regarding the role of IFITM proteins in the TBEV infection have been published so far. Understanding of antiviral innate immune responses is crucial for future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both IFN- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.