Duchenne and Becker muscular dystrophy (DMD and BMD, respectively) are allelic disorders with different clinical presentations and severity determined by mutations in the gene DMD, which encodes the sarcolemmal protein dystrophin. Diagnosis is based on clinical aspects and muscle protein analysis, followed by molecular confirmation. We revised the main aspects of the natural history of dystrophinopathies to define genotype-phenotype correlations in large patient cohorts with extended follow-up. We also specifically explored subjects carrying nucleotide substitutions in the DMD gene, a comparatively less investigated DMD/BMD subgroup. We studied 320 dystrophinopathic patients (205 DMD and 115 BMD), defining muscular, cardiac, respiratory, and cognitive involvement. We also subdivided patients according to the kind of molecular defect (deletions, duplications, nucleotide substitutions or other microrearrangements) and the mutation sites (proximal/distal to exon 45), studying phenotype-genotype correlations for each group. In DMD, mutation type did not influence clinical evolution; mutations located in distal regions (irrespective of their nature) are more likely to be associated with lower IQ levels (p = 0.005). BMD carrying proximal deletions showed a higher degree of cardiac impairment than BMD with distal deletions (p = 0.0046). In the BMD population, there was a strong correlation between the entity of muscle dystrophin deficiency and clinical course (p = 0.002). An accurate knowledge of natural history may help in the clinical management of patients. Furthermore, several clinical trials are ongoing or are currently planned, some of which aim to target specific DMD mutations: a robust natural history is therefore essential to correctly design these experimental trials.
In Duchenne muscular dystrophy (DMD), it is still to be determined if specific timepoints can be identified during the natural evolution of respiratory dysfunction from childhood to adulthood and if scoliosis, steroid therapy and nocturnal noninvasive mechanical ventilation (NIMV) have any effect on it.In a 7-year retrospective study performed on 115 DMD patients (6-24 years), evaluated once or twice per year, with 574 visits in total, evolution mean curves of spirometry, lung volumes, spontaneous breathing and thoraco-abdominal pattern (measured by optoelectronic plethysmography) parameters were obtained by nonlinear regression model analysis.While predicted values of forced vital capacity, forced expiratory volume in 1 s, and peak expiratory flow decline continuously since childhood, during spontaneous breathing the following parameters become significantly different than normal in sequence: abdominal contribution to tidal volume (lower after 14.8 years), tidal volume (lower after 17.2 years), minute ventilation (lower after 18.1 years) and respiratory rate (higher after 22.1 years). Restrictive lung pattern and diaphragmatic impairment are exacerbated by scoliosis severity, slowed by steroids treatment and significantly affected by NIMV.Spirometry, lung volumes, breathing pattern and thoraco-abdominal contributions show different evolution curves over time. Specific timepoints of respiratory impairment are identified during disease progression. These should be considered when defining outcome measures in clinical trials and treatment strategies in DMD.
The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7–15.8 years), and 90 non-ambulant (age range: 9.08–24.78). The total scores changed significantly over time (p<0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials.
Limb-girdle muscular dystrophy (LGMD) 2L, caused by mutations in the anoctamin 5 (ANO5) gene, is the third most common LGMD in Northern and Central Europe, where the c.191dupA mutation causes the majority of cases. We evaluated data from 228 Italian LGMD patients to determine the prevalence of LGMD2L and the c.191dupA mutation, and to describe the clinical, muscle biopsy, and magnetic resonance imaging findings in these patients. Forty-three patients who lacked molecular diagnosis were studied for ANO5 mutations, and four novel mutations were found in three probands. Only one proband carried the c.191dupA mutation, which was compound heterozygous with c.2516T>G. Two probands were homozygous for the c.1627dupA and c.397A>T mutations, respectively, while a fourth proband had a compound heterozygous status (c.220C>T and c.1609T>C). Therefore occurrence and molecular epidemiology of LGMD2L in this Italian cohort differed from those observed in other European countries. ANO5 mutations accounted for ∼2% of our sample. Affected patients exhibited benign progression with variable onset and an absence of cardiac and respiratory impairment; muscle biopsy generally showed mild signs, except when performed on the quadriceps muscles; MRI showed predominant involvement of the posterior thigh. Overall these common clinical, morphological and imaging findings could be useful in differential diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.