Ex vivo amplification of human hematopoietic stem cells (HSC) without loss of their self-renewing potential represents an important target for transplantation, gene and cellular therapies. Valproic acid is a safe and widely used neurologic agent that acts as a potent inhibitor of histone deacetylase activities. Here, we show that valproic acid addition to liquid cultures of human CD34+ + cells isolated from cord blood, mobilized peripheral blood, and bone marrow strongly enhances the ex vivo expansion potential of different cytokine cocktails as shown by morphologic, cytochemical, immunophenotypical, clonogenic, and gene expression analyses. Notably, valproic acid highly preserves the CD34 positivity after 1 week (range, 40-89%) or 3 weeks (range, 21-52%) amplification cultures with two (Flt3L + + thrombopoietin) or four cytokines (Flt3L + + thrombopoietin + + stem cell factor + + interleukin 3). Moreover, valproic acid treatment increases histone H4 acetylation levels at specific regulatory sites on HOXB4, a transcription factor gene with a key role in the regulation of HSC self-renewal and AC133, a recognized marker gene for stem cell populations. Overall, our results relate the changes induced by valproic acid on chromatin accessibility with the enhancement of the cytokine effect on the maintenance and expansion of a primitive hematopoietic stem cell population. These findings underscore the potentiality of novel epigenetic approaches to modify HSC fate in vitro. (Cancer Res 2005; 65(4): 1505-13)
The transformics method was developed to support the integrated testing strategy for carcinogenesis. Results showed the main role of the immune system in the transformation by 3-MCA, with initiating events related to non-genotoxic mechanisms, suggesting the involvement of the AhR receptor.
Our data suggest that isolated ToM deficits could represent an at-risk situation for the development of future prefrontal dysfunction and bvFTD. ToM evaluation should be included in neuropsychological protocols aimed to evaluate the early phases of dementia.
In hematological malignancies, constitutive activation of the RAF/MEK/ERK pathway is frequently observed, conveys a poor prognosis, and constitutes a promising target for therapeutic intervention. Here, we investigated the molecular and functional effects of pharmacological MEK inhibition in cell line models of acute myeloid leukemia (AML) and freshly isolated primary AML samples. The small-molecule, ATP-non-competitive, MEK inhibitor PD0325901 markedly inhibited ERK phosphorylation and growth of several AML cell lines and approximately 70 % of primary AML samples. Growth inhibition was due to G(1)-phase arrest and induction of apoptosis. Transformation by constitutively active upstream pathway elements (HRAS, RAF-1, and MEK) rendered FDC-P1 cells exquisitely prone to PD0325901-induced apoptosis. Gene and protein expression profiling revealed a selective effect of PD0325901 on ERK phosphorylation and compensatory upregulation of the RAF/MEK and AKT/p70( S6K ) kinase modules, potentially mediating resistance to drug-induced growth inhibition. Consequently, in appropriate cellular contexts, both "vertical" (i.e., inhibition of RAF and MEK along the MAPK pathway) and "lateral" (i.e., simultaneous inhibition of the MEK/ERK and mTOR pathways) combination strategies may result in synergistic anti-leukemic effects. Overall, MEK inhibition exerts potent growth inhibitory and proapoptotic activity in preclinical models of AML, particularly in combination with other pathway inhibitors. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective targeted strategies for the treatment of AML.
The use of nuclear resources for medical purposes causes considerable concern about occupational exposure. Nevertheless, little information is available regarding the effects of low-dose irradiations protracted over time. We used oligomicroarrays to identify the genes that are transcriptionally regulated by persistent exposure to extremely low doses of ionizing radiation in 28 exposed professionals (mean cumulative effective dose +/- SD, 19 +/- 38 mSv) compared with a matched sample of nonexposed subjects. We identified 256 modulated genes from peripheral blood mononuclear cells profiles, and the main biological processes we found were DNA packaging and mitochondrial electron transport NADH to ubiquinone. Next we investigated whether a different pattern existed when only 22 exposed subjects with accumulated doses >2.5 mSv, a threshold corresponding to the natural background radiation in Italy per year, and mean equal to 25 +/- 41 mSv were used. In addition to DNA packaging and NADH dehydrogenase function, the analysis of the higher-exposed subgroup revealed a significant modulation of ion homeostasis and programmed cell death as well. The changes in gene expression that we found suggest different mechanisms from those involved in high-dose studies that may help to define new biomarkers of radiation exposure for accumulated doses below 25 mSv.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.