Saliva contains a complex mixture of proteins and peptides as well as fragments derived from these molecules. By RP 1 -HPLC-ESI-MS analysis of the acidic soluble fraction of human whole saliva we have identified in the chromatographic pattern more than 120 different proteins and naturally occurring peptides (1-6). Their characterization was performed by a variety of mass spectrometric techniques coupled with different enzymatic treatments and amino acid sequencing. The proteins and naturally occurring peptides belong to families of well characterized salivary proteins including Histatins, Statherin, acidic and basic proline-rich proteins (aPRP and bPRP), Cystatins, and Defensins (1-6). Two-dimensional gel electrophoresis has also been used by other researchers for analysis of salivary proteins and peptides, but this technique is not well suited for identification of small peptides as illustrated by the difficulty in identifying Histatins and the majority of bPRPs and bPRP fragments (7-9). However, knowledge of salivary proteins and peptides as well as their naturally occurFrom the ‡Dipartimento di Scienze Applicate ai Biosistemi, Università di Cagliari,
Saliva is a body fluid of a unique composition devoted to protect the mouth cavity and the digestive tract. Our high performance liquid chromatography (HPLC)-electrospray ionization-MS analysis of the acidic soluble fraction of saliva from preterm human newborn surprisingly revealed more than 40 protein masses often undetected in adult saliva. We were able to identify the following proteins: stefin A and stefin B, S100A7 (two isoforms), S100A8, S100A9 (four isoforms), S100A11, S100A12, small proline-rich protein 3 (two isoforms), lysozyme C, thymosins  4 and  10 , antileukoproteinase, histone H1c, and ␣ and ␥ globins. The average mass value reported in international data banks was often incongruent with our experimental results mostly because of post-translational modifications of the proteins, e.g. acetylation of the N-terminal residue. A quantitative label-free MS analysis showed protein levels altered in relation to the postconceptional age and suggested coordinate and hierarchical functions for these proteins during development. In summary, this study shows for the first time that analysis of these proteins in saliva of preterm newborns might represent a noninvasive way to obtain precious information of the molecular mechanisms of development of human fetal oral structures. Molecular & Cellular Proteomics 10: 10.1074/mcp.M110.003467, 1-14, 2011.Saliva is a body fluid of a very complex and specific composition devoted to the protection and well-being of the oral cavity and, because it is swallowed, of the digestive tract (1). Protection is ensured by organic and inorganic solutes and specific peptides and proteins, such as acidic and basic proline-rich proteins, ␣-amylases, salivary cystatins, histatins, and statherin (2-5). In a previous study (6), we have established that some salivary proteins and peptides reach the levels typically observed in the adult around 18 years of age. Encouraged by the noninvasive specimen collection, we explored the salivary protein composition of at-term and preterm newborns, in order to establish the starting point of the secretion of the proteins and peptides specific of saliva. Our first study (7) showed that acidic proline-rich proteins secretion started, although at very low levels, at 7 months of postconceptional age. At this age the level of phosphorylation of these proteins was low and it increased reaching a value comparable with that of adults at about one year of age, in concomitance with the beginning of deciduous dentition. Other deep differences between human and preterm saliva were however evident. Highly abundant protein masses detected in preterm saliva were undetectable (at the sensitivity level of our MS apparatus) or at very low level in adult saliva. In a previous study (8) we identified, by different MS approaches, thymosin  4 (T 4 ) and thymosin  10 (T 10 ) in preterm newborn saliva and established by immunohistochemistry their presence in fetal salivary glands. This finding let us to suppose that in preterm newborns these peptides derived from glan...
The systematic search by tandem mass spectrometry of human saliva from four different subjects, of 136 possible fragments originated from histatin 3, allowed the detection of 24 different peptides. They include, with the exception of histatin 4, all the known histatin 3 fragments, namely histatins 5-12 and the peptides corresponding to 15-24, 26 -32, 29 -32 residues, and 13 new fragments corresponding to 1-11, 1-12, 1-13, 5-13, 6 -11, 6 -13, 7-11, 7-12, 7-13, 14 -24, 14 -25, 15-25, and 28 -32 residues of histatin 3. On the contrary, none of 119 possible fragments of histatin 1, including histatin 2, was detected. The results suggest that the genesis of histatin 3-related peptides, being under the principal action of trypsin-like activities, is probably not a random process but rather follows a sequential fragmentation pathway. Lack of detection of C-terminal fragments, with the exception of 26 -32, 28 -32, and 29 -32 fragments, suggested that arginine 25 should be the first cleavage site, generating histatin 6 and 26 -32 fragments. The genesis of 28 -32 and 29 -32 fragments and histatin 5 should implicate a subsequent exo-protease action. Similarly, lack of detection of fragments having Lys-5 and Arg-6 at the N terminus and Arg-25 at the C terminus strongly suggested that sequences KRKF (11-14 residues) and AKR (4 -6 residues) should be the second and the third cleavage sites, respectively. Lys-17 and Arg-22 are not cleaved at all.Histatins are a class of salivary peptides probably present only in higher primates (1), deriving their name from the high histidine content (2, 3). The powerful antifungal action of this class of peptides stimulated intense investigations concerning their properties, activity, structure, and secretion (4). Until now, only two human genes, HTN1 (HIS1) and HTN2 (HIS2), localized on chromosome 4q13, have been recognized as responsible for their synthesis (1, 5). The products of these two genes are histatin 1 and histatin 3, respectively. The former is a peptide of 38 amino acids, phosphorylated at Ser-2, whereas the latter, 32 amino acid long with a sequence very similar to histatin 1, is not phosphorylated. Many other peptides of this family have been identified in human saliva, all sharing a sequence common to the two parent peptides. Although different classifications have been proposed, the current preferred nomenclature derives from the study of Troxler et al. (6), who identified in human saliva a peptide corresponding to the C-terminal 26 residues of histatin 1, named histatin 2, and nine peptides, all related to the sequence of histatin 3 and named histatins 4 -12. Except for histatin 2, the other minor histatins likely originated by proteolytic cleavages from histatin 3. Among them, histatin 5, showing a sequence identical to the first 24 amino acids of histatin 3, represents the major fragment because it is present in human saliva at a higher concentration than the other fragments. Moreover, it appears to display the highest specific activity against Candida albicans species wit...
Statherin is a multifunctional polypeptide specific of human saliva involved in oral calcium homeostasis, phosphate buffering and formation of protein networks. Salivary P-B peptide is usually included into the basic proline-rich protein family but it shows some similarities with statherin and its specific biological role is still undefined. In this study, various fragments and derivatives of statherin and P-B peptide were consistently detected by RP-HPLC ESI-IT MS in 23 samples of human saliva. They were: statherin mono- and non-phosphorylated, statherin Des-Phe(43) (statherin SV1), statherin Des-Thr(42),Phe(43), statherin Des-Asp(1), statherin Des(6-15) (statherin SV2), statherin Des(1-9), statherin Des(1-10), statherin Des(1-13) and P-B Des(1-5). Statherin SV3 (statherin Des(6-15), Phe(43)) was detected only in one sample. Identity of the fragments was confirmed either by MS/MS experiments or by enzymatic digestion or by Edman sequencing. Detection of the fragments suggests that statherin and P-B peptide are submitted to post-translational proteolytic cleavages that are common to other classes of salivary proteins.
We applied best fitting procedures to capillary electrophoresis (CE) mobility values, measured at varying acidic pH, of a set of 21 peptides with a molecular mass ranging from about 350 to 1850 Da. This method allowed the contemporary measurements of C-terminus and carboxylic group of the side-chain of aspartic and glutamic acid dissociation constants and of peptide Stokes radius at different protonation stages. Stokes radius was related to peptide molecular mass M at the power of a fractional coefficient, and best correlation was found at pH 2.25, the fractional coefficient being equal to 0.68. This value is close to that proposed by R. E. Offord (Nature 1966, 211, 591-593), who suggested a proportionality between the polymer Stokes radius and M(2/3). The coefficient value decreases at higher pH, reaching a value of 0.58 at pH 4.25, corresponding to a mean peptide conformational transition towards more compact structures as a consequence of C-terminus dissociation. The measurement of the dissociation constants of each peptide allowed us to determine the percentage error on peptide charge predictions performed utilizing mean dissociation constants. Even for the charge, the best predictive performance is obtained at the most acidic edge of the range of the pH studied, mainly at pH 2.25. Conclusively, this study shows that the best performance of predictive models for peptide CE mobility is obtainable in the very acidic pH range (2.25-2.50) and in the absence of electroosmotic flow, and that a satisfactory predictive equation of peptide electrophoretic mobility (m2V(-1)s(-1) is given by mu = 85.4(Z/M(0.68))10(-8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.