Understanding the relationships between material surface properties and cellular responses is essential to designing optimal material surfaces for implantation and tissue engineering. In this study, cellulose hydrogels were crosslinked using a non-toxic and natural component namely citric acid. The chemical treatment induces COOH functional groups that improve the hydrophilicity, roughness, and materials rheological properties. The physiochemical, morphological, and mechanical analyses were performed to analyze the material surface before and after crosslinking. This approach would help determine if the effect of chemical treatment on cellulose hydrogel improves the hydrophilicity, roughness, and rheological properties of the scaffold. In this study, it was demonstrated that the biological responses of human mesenchymal stem cell with regard to cell adhesion, proliferation, and differentiation were influenced in vitro by changing the surface chemistry and roughness.
Genipin (GN) is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the crosslinking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma) and the hMSCs (human mesenchymal stem cells), as suitable cell models for bone tissue engineering applications of biomaterials.
The antibacterial effect of addition of silver oxide to Na2O x CaO x 2SiO2 glass have been studied. Silver containing and silver free Na2O x CaO x 2SiO2 glasses have been prepared by sol-gel synthesis using tetramethil orthosilicate, sodium ethoxide, calcium nitrate tetrahydrate and silver nitrate as starting materials and methyl ethyl ketone as solvent. The gel was examined by differential thermal analysis, thermo gravimetric analysis, FTIR spectroscopy and X-ray diffraction analysis. Antibacterial and bioactive tests on gel glass powders, obtained after a heat treatment of 2 h at 600 degrees C of the dried gel, were carried out. High antimicrobial effects of samples against Escherichia coli and Streptococcus mutans were found. FTIR measurements and SEM micrographs have ascertained the formation of a hydroxyapatite layer on the surface of samples soaked in a simulated body fluid for different times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.