The fifth generation wireless networks must provide fast and reliable connectivity while coping with the ongoing traffic growth. It is of paramount importance that the required resources, such as energy and bandwidth, do not scale with traffic. While the aggregate network traffic is growing at an unprecedented rate, users tend to request the same popular contents at different time instants. Therefore, caching the most popular contents at the network edge is a promising solution to reduce the traffic and the energy consumption over the backhaul links. In this paper, two scenarios are considered, where caching is performed either at a small base station, or directly at the user terminals, which communicate using Device-to-Device (D2D) communications. In both scenarios, joint design of the transmission and caching policies is studied when the user demands are known in advance. This joint design offers two different caching gains, namely, the pre-downloading and local caching gains. It is shown that the finite cache capacity limits the attainable gains, and creates an inherent tradeoff between the two types of gains. In this context, a continuous time optimization problem is formulated to determine the optimal transmission and caching policies that minimize a generic cost function, such as energy, bandwidth, or throughput. The jointly optimal solution is obtained by demonstrating that caching files at a constant rate is optimal, which allows reformulation of the problem as a finite-dimensional convex program. The numerical results show that the proposed joint transmission and caching policy dramatically reduces the total cost, which is particularised to the total energy consumption at the Macro Base Station (MBS), as well as to the total economical cost for the service provider, when users demand economical incentives for delivering content to other users over the D2D links
Molecular communication is a promising paradigm to implement nanonetworks, the interconnection of nanomachines. Catalytic nanomotors constitute one of the techniques that have been proposed for medium-range molecular communications. This paper presents a physical channel characterization that shows how nanomachines communicate using catalytic nanomotors as information carriers. Quantitative results of the packet transmission delay and loss probability are then obtained through simulation. Finally, some trade-offs that will arise when designing these networks are outlined.
Energy harvesting is increasingly gaining importance as a means to charge battery powered devices such as sensor nodes. Efficient transmission strategies must be developed for Wireless Energy Harvesting Nodes (WEHNs) that take into account both the availability of energy and data in the node. We consider a scenario where data and energy packets arrive to the node where the time instants and amounts of the packets are known (offline approach). In this paper, the best data transmission strategy is found for a finite battery capacity WEHN that has to fulfill some Quality of Service (QoS) constraints, as well as the energy and data causality constraints. As a result of our analysis, we can state that losing energy due to overflows of the battery is inefficient unless there is no more data to transmit and that the problem may not have a feasible solution. Finally, an algorithm that computes the data transmission curve minimizing the total transmission time that satisfies the aforementioned constraints has been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.