Immune protection of artificial tissue by means of pancreatic islet microencapsulation is a very ambitious new approach to avoid life-long immune suppression. But the success in the utilization of the alginate-beads with incorporated islets is unfortunately limited. Some of the problems cannot be solved by a two-component system, so polymer encapsulation of the microbeads was tested to improve the properties. In the present paper a pure nanoencapsulation multilayer approach was tested in order to reduce the size of the capsule and possibly apply in the future a multilayer capsule with individual properties in each layer or region of the capsule. Different polycations were attached in a self-assembly process. The advantage in using the surface charge of islets as binding site for the polyions is the guarantee of complete coverage after the second layer. Release of insulin was determined to characterize the function of the islets after encapsulation as well as the permeability of the capsule. Fluorescence microscopy was used to visualize the polyelectrolyte layers. Finally by means of an immune assay, the protection capability of the capsule was proved. In these first measurements the encapsulation with a multilayer nanocapsule was shown to be a possible alternative to the more space-consuming and random islet-trapping microencapsulation.
Insulin expression in the thymus has been implicated in regulating the negative selection of autoreactive T cells and in mediating the central immune tolerance towards pancreatic b-cells. To further explore the function of this ectopic insulin expression, we knocked out the mouse Ins2 gene specifically in the Aire-expressing medullary thymic epithelial cells (mTECs), without affecting its expression in the b-cells. When further crossed to the Ins1 knockout background, both male and female pups (designated as ID-TEC mice for insulin-deleted mTEC) developed diabetes spontaneously around 3 weeks after birth. b-cell-specific autoimmune destruction was observed, as well as isletspecific T cell infiltration. The presence of insulin-specific effector T cells was shown using ELISPOT assays and adoptive T cell transfer experiments. Results from thymus transplantation experiments proved further that depletion of Ins2 expression in mTECs was sufficient to break central tolerance and induce anti-insulin autoimmunity. Our observations may explain the rare cases of type 1 diabetes onset in very young children carrying diabetes-resistant HLA class II alleles. ID-TEC mice could serve as a new model for studying this pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.