Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n=35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (p adj =6.73x10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.
Atypical cortical organization and reduced integrity of the gray–white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray–white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray–white matter interface, which indicates a less distinct gray–white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray–white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies.
These findings highlight the need for considering normative sex-related phenotypic diversity when determining an individual's risk for ASD and provide important novel insights into the neurobiological mechanisms mediating sex differences in ASD prevalence.
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition that is accompanied by an atypical development of brain maturation. So far, brain development has mainly been studied during early childhood in ASD, and using measures of total or lobular brain volume. However, cortical volumetric measures are a product of two distinct biological neuroanatomical features, cortical thickness, and surface area, which most likely also have different neurodevelopmental trajectories in ASD. Here, we therefore examined age-related differences in cortical thickness and surface area in a cross-sectional sample of 77 male individuals with ASD ranging from 7 to 25 years of age, and 77 male neurotypical controls matched for age and FSIQ. Surface-based measures were analyzed using a general linear model (GLM) including linear, quadratic, and cubic age terms, as well as their interactions with the main effect of group. When controlling for the effects of age, individuals with ASD had spatially distributed reductions in cortical thickness relative to controls, particularly in fronto-temporal regions, and also showed significantly reduced surface area in the prefrontal cortex and the anterior temporal lobe. We also observed significant group × age interactions for both measures. However, while cortical thickness was best predicted by a quadratic age term, the neurodevelopmental trajectory for measures of surface area was mostly linear. Our findings suggest that ASD is accompanied by age-related and region-specific reductions in cortical thickness and surface area during childhood and early adulthood. Thus, differences in the neurodevelopmental trajectory of maturation for both measures need to be taken into account when interpreting between-group differences overall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.