The fluoride from hydrofluoric acid treatment on Ti and TiO2 surfaces gave no specific effect on primary human osteoblast cells. The study indicates that the released fluoride is not the unique factor for the bioactivity of Ti and TiO2 surfaces.
The attachment of implants relies on bone and soft tissue biocompatibility. The aim of this article is to investigate the effect of fluoride-modified metallic titanium (Ti) surfaces (Ti-F) on proliferation and differentiation of human gingival fibroblasts. Human gingival fibroblast cells were exposed to hydrofluoric acid–modified Ti coins (Ti-F) for 1, 3, 7, 14 and 21 days, and untreated coins were used as controls. A five- to six-fold increase in the proliferation of human gingival fibroblasts on Ti-F compared to Ti surfaces was observed. Enhanced gene expression of interleukin-6 and osteoprotegerin was found at 7 days. Increased levels of sclerostin, interleukin-6 and osteoprotegerin in the media from human gingival fibroblasts cultured on Ti-F coins were found compared to controls. Our results confirm that hydrofluoric acid–modified surface may indirectly enhance the firm attachment of implant surface to junction epithelium, soft tissue epithelium, which would give protection for underlying osseous structures making osseointegration of the dental implant possible.
Immediately after dental implant insertion, blood will be in direct contact and interact with the implant surface and activates inflammatory responses and complement cascades within seconds. The aim of the present study was to determine the ability of fluoride-modified titanium surfaces to activate complement cascades using the human buffy coat as model. The buffy coats were exposed to hydrofluoric acid-modified surfaces for a short time and its responses were compared to controls. Identification and quantification of complement cascade biomarkers were conducted using ELISA kits and multianalyte profiling using Luminex. A lower level of C3 at 30 min and increased levels of C4, MIP-4, CRP, and pigment epithelium-derived factor at 360 min were found on modified surfaces as compared to controls. We found no significant differences in the levels of C3a, C5a, C Factor H, α2M, ApoA1, ApoC3, ApoE, Prealbumin, α1AT, and SAP in modified surfaces in the buffy coats. We conclude that titanium surfaces treated with hydrofluoric acid modify the levels of specific biomarkers related to the complement cascade and angiogenesis and, thus, tissue growth, remodeling and repair, as this may play a role in the enhanced clinical performance of fluoride-modified Ti dental implants.
Hovedbudskap
Lokalisert juvenil spongiotisk gingival hyperplasi (LJSGH) manifesterer seg som et lettblødende, lokalisert rødt felt på den festede gingiva
Histologisk sees hyperplastisk spongiotisk flerlaget plateepitel med årerike bindevevspapiller
Forbedret hygiene reduserer ikke hyperplasien
De fleste LJSGH som er beskrevet i litteraturen er fjernet kirurgisk, noe som muliggjør histopatologisk undersøkelse og diagnose, men som kan medføre gingival retraksjon. Residiv kan forekomme
Man tror LJSGH er mer vanlig enn antallet biopsier kan tilsi og at tilstanden i mange tilfeller forsvinner av seg selv
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.