This article reports on a new approach to properly analyze time series of dynamical systems which are spoilt by the simultaneous presence of dynamical noise and measurement noise. It is shown that even strong external measurement noise as well as dynamical noise which is an intrinsic part of the dynamical process can be quantified correctly, solely on the basis of measured times series and proper data analysis. Finally real world data sets are presented pointing out the relevance of the new approach.
It is a big challenge in the analysis of experimental data to disentangle the unavoidable measurement noise from the intrinsic dynamical noise. Here we present a general operational method to extract measurement noise from stochastic time series even in the case when the amplitudes of measurement noise and uncontaminated signal are of the same order of magnitude. Our approach is based on a recently developed method for a nonparametric reconstruction of Langevin processes. Minimizing a proper non-negative function, the procedure is able to correctly extract strong measurement noise and to estimate drift and diffusion coefficients in the Langevin equation describing the evolution of the original uncorrupted signal. As input, the algorithm uses only the two first conditional moments extracted directly from the stochastic series and is therefore suitable for a broad panoply of different signals. To demonstrate the power of the method, we apply the algorithm to synthetic as well as climatological measurement data, namely, the daily North Atlantic Oscillation index, shedding light on the discussion of the nature of its underlying physical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.