The caspase family represents a new class of intracellular cysteine proteases with known or suspected roles in cytokine maturation and apoptosis. These enzymes display a preference for Asp in the P1 position of substrates. To clarify differences in the biological roles of the interleukin-1 converting enzyme (ICE) family proteases, we have examined in detail the specificities beyond the P1 position of caspase-1, -2, -3, -4, -6, and -7 toward minimal length peptide substrates in vitro. We find differences and similarities between the enzymes that suggest a functional subgrouping of the family different from that based on overall sequence alignment. The primary specificities of ICE homologs explain many observed enzyme preferences for macromolecular substrates and can be used to support predictions of their natural function(s). The results also suggest the design of optimal peptidic substrates and inhibitors.A growing body of evidence supports important roles for the interleukin-1 converting enzyme (ICE) 1 (1, 2) and its homologs (recently renamed caspases (3)) in cytokine maturation and apoptosis. The caspase gene family, defined by protein sequence homology but also characterized by conservation of key catalytic and substrate-recognition amino acids, includes caspase-2 (4), caspase-3 (5-7), caspase-4 (8 -10), caspase-5 (10), caspase-6 (11), caspase-7 (12-14), caspase-8 (15-17), caspase-9 (18, 19), and caspase-10 (17). Each is an intracellular cysteine protease that shares with the serine protease granzyme B specificity for Asp in the P1 position of substrates. The specific biological roles and interrelationships of these enzymes are for the most part unknown and are areas of active investigation in many laboratories.A role for caspase-1 in inflammation is supported by several lines of evidence. Caspase-1-deficient mice, and cells derived from those animals, are deficient in IL-1 maturation and are resistant to endotoxic shock (20,21). Peptidic inhibitors of caspase-1 can be effective in blocking maturation and release of IL-1 by cultured cells (1) and in whole animals (22, 23) and of inflammation in animal models (24,25). The selectivity of the inhibitors employed in these studies among the caspases has not been demonstrated, and so the precise role of each caspase in inflammation is uncertain. Nevertheless the results uphold the promise of caspase-1 and/or its homologs as targets for anti-inflammatory drug discovery.Caspases play important roles in apoptosis signaling and effector mechanisms. Sequence alignments reveal homology with Ced-3 (26), a nematode cysteine protease (27, 28) that is required for cell death. The viral proteins CrmA and p35 are antiapoptotic and act by inhibition of caspases (29,30). A bacterial invasin induces apoptosis by binding to and activating caspase-1 specifically (31). Caspase-3 is necessary and sufficient for apoptosis in one acellular model (6); however, in mice the essential function of this enzyme is limited to apoptosis in the brain (32). A hallmark of apoptosis is the pr...