SummaryBackgroundThe Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.MethodsWe used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).FindingsBetween 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DA...
Summary Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and t...
Introduction: The International Physical Activity Questionnaire (IPAQ) was developed to measure health-related physical activity (PA) in populations. The short version of the IPAQ has been tested extensively and is now used in many international studies. The present study aimed to explore the validity characteristics of the long-version IPAQ. Subjects and methods: Forty-six voluntary healthy male and female subjects (age, mean^standard deviation: 40.7^10.3 years) participated in the study. PA indicators derived from the long, self-administered IPAQ were compared with data from an activity monitor and a PA log book for concurrent validity, and with aerobic fitness, body mass index (BMI) and percentage body fat for construct validity. Results: Strong positive relationships were observed between the activity monitor data and the IPAQ data for total PA (r ¼ 0.55, P , 0.001) and vigorous PA (r ¼ 0.71, P , 0.001), but a weaker relationship for moderate PA (r ¼ 0.21, P ¼ 0.051). Calculated MET-h day 21 from the PA log book was significantly correlated with METh day 21 from the IPAQ (r ¼ 0.67, P , 0.001). A weak correlation was observed between IPAQ data for total PA and both aerobic fitness (r ¼ 0.21, P ¼ 0.051) and BMI (r ¼ 0.25, P ¼ 0.009). No significant correlation was observed between percentage body fat and IPAQ variables. Bland -Altman analysis suggested that the inability of activity monitors to detect certain types of activities might introduce a source of error in criterion validation studies. Conclusions: The long, self-administered IPAQ questionnaire has acceptable validity when assessing levels and patterns of PA in healthy adults.
ObjectiveTo examine the dose-response associations between accelerometer assessed total physical activity, different intensities of physical activity, and sedentary time and all cause mortality.DesignSystematic review and harmonised meta-analysis.Data sourcesPubMed, PsycINFO, Embase, Web of Science, Sport Discus from inception to 31 July 2018.Eligibility criteriaProspective cohort studies assessing physical activity and sedentary time by accelerometry and associations with all cause mortality and reported effect estimates as hazard ratios, odds ratios, or relative risks with 95% confidence intervals.Data extraction and analysisGuidelines for meta-analyses and systematic reviews for observational studies and PRISMA guidelines were followed. Two authors independently screened the titles and abstracts. One author performed a full text review and another extracted the data. Two authors independently assessed the risk of bias. Individual level participant data were harmonised and analysed at study level. Data on physical activity were categorised by quarters at study level, and study specific associations with all cause mortality were analysed using Cox proportional hazards regression analyses. Study specific results were summarised using random effects meta-analysis.Main outcome measureAll cause mortality.Results39 studies were retrieved for full text review; 10 were eligible for inclusion, three were excluded owing to harmonisation challenges (eg, wrist placement of the accelerometer), and one study did not participate. Two additional studies with unpublished mortality data were also included. Thus, individual level data from eight studies (n=36 383; mean age 62.6 years; 72.8% women), with median follow-up of 5.8 years (range 3.0-14.5 years) and 2149 (5.9%) deaths were analysed. Any physical activity, regardless of intensity, was associated with lower risk of mortality, with a non-linear dose-response. Hazards ratios for mortality were 1.00 (referent) in the first quarter (least active), 0.48 (95% confidence interval 0.43 to 0.54) in the second quarter, 0.34 (0.26 to 0.45) in the third quarter, and 0.27 (0.23 to 0.32) in the fourth quarter (most active). Corresponding hazards ratios for light physical activity were 1.00, 0.60 (0.54 to 0.68), 0.44 (0.38 to 0.51), and 0.38 (0.28 to 0.51), and for moderate-to-vigorous physical activity were 1.00, 0.64 (0.55 to 0.74), 0.55 (0.40 to 0.74), and 0.52 (0.43 to 0.61). For sedentary time, hazards ratios were 1.00 (referent; least sedentary), 1.28 (1.09 to 1.51), 1.71 (1.36 to 2.15), and 2.63 (1.94 to 3.56).ConclusionHigher levels of total physical activity, at any intensity, and less time spent sedentary, are associated with substantially reduced risk for premature mortality, with evidence of a non-linear dose-response pattern in middle aged and older adults.Systematic review registrationPROSPERO CRD42018091808.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.