Abstract. Peatland restoration by inundation of drained areas can alter local greenhouse gas emissions as CO 2 and CH 4 . Factors that can influence these emissions include the quality and amount of substrates available for anaerobic degradation processes and the sources and availability of electron acceptors. In order to learn about possible sources of high CO 2 and CH 4 emissions from a rewetted degraded fen grassland, we performed incubation experiments that tested the effects of fresh plant litter in the flooded peats on pore water chemistry and CO 2 and CH 4 production and emission.The position in the soil profile of the pre-existing drained peat substrate affected initial rates of anaerobic CO 2 production subsequent to flooding, with the uppermost peat layer producing the greatest specific rates of CO 2 evolution. CH 4 production rates depended on the availability of electron acceptors and was significant only when sulfate concentrations were reduced in the pore waters. Very high specific rates of both CO 2 (maximum of 412 mg C d −1 kg −1 C) and CH 4 production (788 mg C d −1 kg −1 C) were observed in a new sediment layer that accumulated over the 2.5 years since the site was flooded. This new sediment layer was characterized by overall low C content, but represented a mixture of sand and relatively easily decomposable plant litter from reed canary grass killed by flooding. Samples that excluded this new sediment layer but included intact roots remaining from flooded grasses had specific rates of CO 2 (max. 28 mg C d −1 kg −1 C) and CH 4 (max. 34 mg C d −1 kg −1 C) production that were Correspondence to: M. Hahn-Schöfl (maria.hahn@yahoo.de) 10-20 times lower than for the new sediment layer and were comparable to those of a newly flooded upper peat layer. Lowest rates of anaerobic CO 2 and CH 4 production (range of 4-8 mg C d −1 kg −1 C and <1 mg C d −1 kg −1 C) were observed when all fresh organic matter sources (plant litter and roots) were excluded. In conclusion, the presence of fresh organic substrates such as plant and root litter originating from plants killed by inundation has a high potential for CH 4 production, whereas peat without any fresh plant-derived material is relatively inert. Significant anaerobic CO 2 and CH 4 production in peat only occurs when some labile organic matter is available, e.g. from remaining roots or root exudates.
Peatland restoration by inundation of drained areas can alter local greenhouse gas emissions by altering rates of CO2 and CH4 emissions. Factors that can influence these emissions include the quality and amount of substrates available for anaerobic degradation processes and the sources and availability of electron acceptors. In order to learn about possible sources of high CO2 and CH4 emissions from a rewetted degraded fen grassland, we performed incubation experiments that tested the effects of fresh plant litter in the flooded peats on pore water chemistry and CO2 and CH4 production and emission.
The position in the soil profile of the pre-existing drained peat substrate affected initial rates of anaerobic CO2 production subsequent to flooding, with the uppermost peat layer producing the greatest specific rates of CO2 evolution. CH4 production rates depended on the availability of electron acceptors and was significant only when sulfate concentrations were reduced in the pore waters. Very high specific rates of both CO2 (maximum of 412 mg C d−1 kg−1 C) and CH4 production (788 mg C d−1 kg−1 C) were observed in a new sediment layer that accumulated over 2.5 years since the site was flooded. This new sediment layer was characterized by overall low C content, but represented a mixture of sand and relatively easily decomposable plant litter from reed canary grass killed by flooding. Samples that excluded this new sediment layer but included intact roots remaining from flooded grasses had specific rates of CO2 (max. 28 mg C d−1 kg−1 C) and CH4 (max. 34 mg C d−1 kg−1 C) production that were 10–20 times lower, and were comparable to those of newly flooded upper peat layer. Lowest rates of anaerobic CO2 and CH4 production (range of 4–8 mg C d−1 kg−1 C and <1 mg C d−1 kg−1 C) were observed when all fresh organic matter sources (plant litter and roots) were excluded. In conclusion, the presence of fresh organic substrates such as plant and root litter originating from plants killed by inundation has a high potential for CH4 production, whereas peat without any fresh plant-derived material is relatively inert. Anaerobic CO2 and CH4 production in peat only occurs when some labile organic matter is available, e.g. from remaining roots or root exudates
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.