Rational drug design is predicated on knowledge of the three-dimensional structure of the protein−ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. 15N and 2H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein−carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate–protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultra-high-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-free state (1.08 Å at 100 K, 1.25 Å at 298 K) and in complex with lactose (0.86 Å) or glycerol (0.9 Å). These structures reveal striking similarities in the positions of water and carbohydrate oxygen atoms in all three states, indicating that the binding site of Gal3C is preorganized to coordinate oxygen atoms in an arrangement that is nearly optimal for the recognition of β-galactosides. Deuterium nuclear magnetic resonance (NMR) relaxation dispersion experiments and molecular dynamics simulations demonstrate that all water molecules in the lactose-binding site exchange with bulk water on a time scale of nanoseconds or shorter. Nevertheless, molecular dynamics simulations identify transient water binding at sites that agree well with those observed by crystallography, indicating that the energy landscape of the binding site is maintained in solution. All heavy atoms of glycerol are positioned like the corresponding atoms of lactose in the Gal3C complexes. However, binding of glycerol to Gal3C is insignificant in solution at room temperature, as monitored by NMR spectroscopy or isothermal titration calorimetry under conditions where lactose binding is readily detected. These observations make a case for protein cryo-crystallography as a valuable screening method in fragment-based drug discovery and further suggest that identification of water sites might inform inhibitor design.
The bacterial ω‐transaminase from Chromobacterium violaceum (Cv‐ωTA, http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/6/1/18.html) catalyses industrially important transamination reactions by use of the coenzyme pyridoxal 5′‐phosphate (PLP). Here, we present four crystal structures of Cv‐ωTA: two in the apo form, one in the holo form and one in an intermediate state, at resolutions between 1.35 and 2.4 Å. The enzyme is a homodimer with a molecular mass of ∼ 100 kDa. Each monomer has an active site at the dimeric interface that involves amino acid residues from both subunits. The apo‐Cv‐ωTA structure reveals unique ‘relaxed’ conformations of three critical loops involved in structuring the active site that have not previously been seen in a transaminase. Analysis of the four crystal structures reveals major structural rearrangements involving elements of the large and small domains of both monomers that reorganize the active site in the presence of PLP. The conformational change appears to be triggered by binding of the phosphate group of PLP. Furthermore, one of the apo structures shows a disordered ‘roof ’ over the PLP‐binding site, whereas in the other apo form and the holo form the ‘roof’ is ordered. Comparison with other known transaminase crystal structures suggests that ordering of the ‘roof’ structure may be associated with substrate binding in Cv‐ωTA and some other transaminases. Database The atomic coordinates and structure factors for the Chromobacterium violaceumω‐transaminase crystal structures can be found in the RCSB Protein Data Bank (http://www.rcsb.org) under the accession codes http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4A6U for the holoenzyme, http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4A6R for the apo1 form, http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4A6T for the apo2 form and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4A72 for the mixed form Structured digital abstract http://www.uniprot.org/uniprot/Q7NWG4 and http://www.uniprot.org/uniprot/Q7NWG4 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0407 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0038 (http://mint.bio.uniroma2.it/mint/search/interaction.do?interactionAc=MINT-8300874) http://www.uniprot.org/uniprot/Q7NWG4 and http://www.uniprot.org/uniprot/Q7NWG4 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0407 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0114 (http://mint.bio.uniroma2.it/mint/search/interaction.do?interactionAc=MINT-8300763) http://www.uniprot.org/uniprot/Q7NWG4 and http://www.uniprot.org/uniprot/Q7NWG4 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0407 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0114 (http://mint.bio.uniroma2.it/mint/search/interaction.do?interactionAc=MINT-8300950)
The design of small and high-affinity lectin inhibitors remains a major challenge because the natural ligand binding sites of lectin are often shallow and have polar character. Herein we report that derivatizing galactose with un-natural structural elements that form multiple non-natural lectin-ligand interactions (orthogonal multipolar fluorine-amide, phenyl-arginine, sulfur-π, and halogen bond) can provide inhibitors with extraordinary affinity (low nanomolar) for the model lectin, galectin-3, which is more than five orders of magnitude higher than the parent galactose; moreover, is selective over other galectins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.