The element specificity of photoelectron spectroscopy (PES) has been used to compare the electronic and molecular structure of the dyes Ru(tcterpy)(NCS)3 (BD) and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2. Ru(dcbpy)2(NCS)2 was investigated in its acid (N3) and in its 2-fold deprotonated form (N719) having tetrabutylammonium (TBA+) as counterions. A comparison of the O1s spectra for the dyes indicates that the interactions through the carboxylate groups with the TiO2 surface are very similar for the dyes. However, we observe that some of the dye molecules also interact through the NCS groups when adsorbed at the TiO2 surface. Comparing the N719 and the N3 molecule, the fraction of NCS groups interacting through the sulfur atoms is smaller for N719 than for N3. We also note that the counterion TBA+ is coadsorbed with the N719 and BD molecules although the amount was smaller than expected from the molecular formulas. Comparing the valence levels for the dyes adsorbed on TiO2, the position of the highest occupied electronic energy level is similar for N3 and N719, while that for BD is lower by 0.25 eV relative to that of the other complexes.
The dinuclear RuII-PdII complex shows efficient H2 production in the presence of triethylamine as a sacrificial electron and proton donor under visible light irradiation. XPS and TEM analyses reveal that photoreduction of PdII to Pd0 causes dissociation of Pd from the complex to form colloids that are suggested to be the actual catalyst for H2 production.
Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.
The frontier electronic structures of Ru(tcterpy)(NCS)3 [black dye (BD)] and Ru(dcbpy)2(NCS)(2) (N719) have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS) and resonant photoelectron spectroscopy (RPES). N1s XAS has been used to probe the nitrogen contribution in the unoccupied density of states, and PES, together with RPES over the N1s edge, has been used to delineate the character of the occupied density of states. The experimental findings of the frontier electron structure are compared to calculations of the partial density of states for the nitrogens in the different ligands (NCS and terpyridine/bipyridine) and for Ru4d. The result indicates large similarities between the two complexes. Specifically, the valence level spectra show two well separated structures at low binding energy. The experimental results indicate that the outermost structure in the valence region largely has a Ru4d character but with a substantial character also from the NCS ligand. Interestingly, the second lowest structure also has a significant Ru4d character mixed into the structure otherwise dominated by NCS. Comparing the two complexes the BD valence structures lowest in binding energy contains a large contribution from the NCS ligands but almost no contribution from the terpyridine ligands, while for N719 also some contribution from the bipyridine ligands is mixed into the energy levels.
Nanostructured TiO 2 films were modified by insertion with aluminum ions using an electrochemical process. After heat treatment these films were found suitable as electrodes in dye-sensitized solar cells. By means of a catechol adsorption test, as well as photoelectron spectroscopy (PES), it was demonstrated that the density of Ti atoms at the metal oxide/electrolyte interface is reduced after Al modification. There is, however, not a complete coverage of aluminum oxide onto the TiO 2 , but the results rather suggest either the formation of a mixed Al-Ti oxide surface layer or formation of a partial aluminum oxide coating. No new phase could, however, be detected. In solar cells incorporating Al-modified TiO 2 electrodes, both electron lifetimes and electron transport times were increased. At high concentrations of inserted aluminum ions, the quantum efficiency for electron injection was significantly decreased. Results are discussed at the hand of different models: A multiple trapping model, which can explain slower kinetics by the creation of additional traps during Al insertion, and a surface layer model, which can explain the reduced recombination rate, as well as the reduced injection efficiency, by the formation of a blocking layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.