Phosphogysum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A -Not Dangerous, Not Inert, Not Corrosive and Not Reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific 226 Ra activity in the phosphogypsum samples (252 Bq kg -1 ) was below the maximum level recommended by USEPA, which is 370 Bq kg -1 for agricultural use. In addition, this study verified that natural
This paper presents an evaluation of the environmental behavior of arsenic species in soils (F. F. Dias, Master Thesis, University of Delaware, 1997). The results obtained were used to determine adsorption constants that were incorporated in mathematical models using forward and backward stepwise linear regression to correlate data. The amount of adsorption was significantly different depending on soil properties, such as organic matter, iron oxide content, and surface area. Arsenic speciation on the soil surface was deduced from desorption data, with As(V) being more strongly retained in the soil. As(III) was oxidized on the soil surface and desorbed as As(V); an important factor since As(V) is less toxic. In order to develop an adequate adsorption model, Langmuir and Freundlich isotherms were obtained for each soil without pH alteration. Results indicated that the maximum amount of As(V) adsorbed was greater than the amount of As(III) adsorbed. Adsorption edges for As(III) and As(V), with pH varying from 3 to 10, were obtained at concentrations that ranged from 0.1 to 200 mg L(-1). The soils studied exhibited an L-type Langmuir isotherm. Maximum As(III) adsorption occurred around pH 6 to 9, while maximum As(V) adsorption occurred in the 4 to 5 pH range. Experiments to determine arsenic kinetics were carried out and showed that adsorption and desorption equilibrium was reached within 48 hours for both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.