Coronavirus nanoparticles show a strong peak of Plasmon absorption in ultraviolet–visible zone. A strong interaction exists between the surface of Coronavirus nanoparticles and Bcr–Abl tyrosine–kinase inhibitors (TKI) such as Imatinib (STI571), Nilotinib (AMN107), Dasatinib (BMS–345825), Bosutinib (SKI–606), Ponatinib (AP–24534) and Bafetinib (INNO–406). Bcr–Abl tyrosine–kinase inhibitors (TKI) such as Imatinib (STI571), Nilotinib (AMN107), Dasatinib (BMS–345825), Bosutinib (SKI–606), Ponatinib (AP–24534) and Bafetinib (INNO–406) cause to aggregation of Coronavirus nanoparticles linked to DNA/RNA and hence, lead to widening of peak Plasmon of Coronavirus nanoparticles surface at 550 (nm) and emerging a new peak at higher wavelength. In the current project, this optical characteristic of Coronavirus nanoparticles is used to time investigate of interaction between different Bcr–Abl tyrosine–kinase inhibitors (TKI) such as Imatinib (STI571), Nilotinib (AMN107), Dasatinib (BMS–345825), Bosutinib (SKI–606), Ponatinib (AP–24534) and Bafetinib (INNO–406) and Coronavirus nanoparticles. The results were shown that Bcr–Abl tyrosine–kinase inhibitors (TKI) such as Imatinib (STI571), Nilotinib (AMN107), Dasatinib (BMS–345825), Bosutinib (SKI–606), Ponatinib (AP–24534) and Bafetinib (INNO–406) with shorter chain length interact faster with Coronavirus nanoparticles. Therefore, a simple and fast method for identification of Bcr–Abl tyrosine–kinase inhibitors (TKI) such as Imatinib (STI571), Nilotinib (AMN107), Dasatinib (BMS–345825), Bosutinib (SKI–606), Ponatinib (AP–24534) and Bafetinib (INNO–406) with various chain length using red shift in surficial Plasmon absorption is presented.
Mendelevium nanoparticles absorb energy of descendent light and generate some heat in the particle.The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation. In the current study, thermoplasmonic characteristics of Mendelevium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Mendelevium nanoparticles were simulated using 3D finite element method.Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Mendelevium nanoparticles by solving heat equation. The obtained results show that Mendelevium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method. When Mendelevium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.