The parameters specifying whether autoreactive CD4(+) thymocytes are deleted (recessive tolerance) or differentiate into regulatory T cells (dominant tolerance) remain unresolved. Dendritic cells directly delete thymocytes, partly through cross-presentation of peripheral antigens 'promiscuously' expressed in medullary thymic epithelial cells (mTECs) positive for the autoimmune regulator Aire. It is unclear if and how mTECs themselves act as antigen-presenting cells during tolerance induction. Here we found that an absence of major histocompatibility class II molecules on mTECs resulted in fewer polyclonal regulatory T cells. Furthermore, targeting of a model antigen to Aire(+) mTECs led to the generation of specific regulatory T cells independently of antigen transfer to dendritic cells. Thus, 'routing' of mTEC-derived self antigens may determine whether specific thymocytes are deleted or enter the regulatory T cell lineage.
Understanding how thymic selection imparts self-peptide-MHC complex restriction and a high degree of self tolerance on the T cell repertoire requires a detailed description of the parameters that shape the MHC ligand repertoire of distinct thymic antigen-presenting cells and of how these cells communicate with T cells. Several recent discoveries pertaining to cortex-specific pathways of antigen processing, the heterogeneity of thymic dendritic cells and the intercellular transfer of self antigens have uncovered surprising and unique aspects of antigen presentation in the thymic microenvironment. Here, we discuss these new findings in the context of how individual thymic stromal cell types support T cell selection in a cooperative rather than a redundant manner.
Thymic antigen-presenting cells (APCs) such as dendritic cells and medullary thymic epithelial cells (mTECs) use distinct strategies of self-antigen expression and presentation to mediate central tolerance. The thymus also harbors B cells; whether they also display unique tolerogenic features and how they genealogically relate to peripheral B cells is unclear. Here, we found that Aire is expressed in thymic but not peripheral B cells. Aire expression in thymic B cells coincided with major histocompatibility class II (MHCII) and CD80 upregulation and immunoglobulin class-switching. These features were recapitulated upon immigration of naive peripheral B cells into the thymus, whereby this intrathymic licensing required CD40 signaling in the context of cognate interactions with autoreactive CD4(+) thymocytes. Moreover, a licensing-dependent neo-antigen selectively upregulated in immigrating B cells mediated negative selection through direct presentation. Thus, autoreactivity within the nascent T cell repertoire fuels a feed forward loop that endows thymic B cells with tolerogenic features.
Medullary thymic epithelial cells (mTECs) serve an essential function in central tolerance through expressing peripheral tissue-antigens. These antigens may be transferred to and presented by dendritic cells. Therefore, it is unclear whether mTECs, besides being an 'antigen reservoir', also serve a mandatory function as antigen presenting cells. Here, we reduced major histocompatibility complex class II on mTECs through transgenic expression of a C2TA-specific 'designer miRNA'. This resulted in an enlarged polyclonal CD4 single-positive compartment and, among thymocytes specific for model-antigens expressed in mTECs, enhanced selection of regulatory T cells (T reg ) at the expense of deletion. Our data document an autonomous contribution of mTECs to both dominant and recessive mechanisms of CD4 T cell tolerance and support an avidity model of T reg development versus deletion.3
The concept of clonal deletion of immune cells that carry an autoreactive antigen receptor was a central prediction of Burnet's clonal selection theory. A series of classical experiments in the late 1980s revealed that certain immature thymocytes upon encounter of 'self' are indeed removed from the T-cell repertoire before their release into the blood circulation. A second essential cornerstone of immunological tolerance, not anticipated by Burnett, has more recently surfaced through the discovery of Foxp3 + regulatory T cells (Treg). Intriguingly, it appears that the expression of an autoreactive T-cell receptor is a shared characteristic of T cells that are subject to clonal deletion as well as of those deviated into the Treg lineage. This is all the more striking as Treg differentiation for the most part branches off from mainstream CD4T cell development during thymocyte maturation in the thymus, that is, it may neither temporally nor spatially be separated from clonal deletion. This raises the question of how an apparently identical stimulus, namely the encounter of 'self' during thymocyte development, can elicit fundamentally different outcomes such as apoptotic cell death on the one hand or differentiation into a highly specialized T-cell lineage on the other hand. Here, we will review the T-cell intrinsic and extrinsic factors that have been implicated in intrathymic Treg differentiation and discuss how these parameters may determine whether an autoreactive major histocompatibility complex class II-restricted thymocyte is deviated into the Treg lineage or subject to clonal deletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.