Photovoltaics based on nanowire arrays could reduce cost and materials consumption compared with planar devices but have exhibited low efficiency of light absorption and carrier collection. We fabricated a variety of millimeter-sized arrays of p-type/intrinsic/n-type (p-i-n) doped InP nanowires and found that the nanowire diameter and the length of the top n-segment were critical for cell performance. Efficiencies up to 13.8% (comparable to the record planar InP cell) were achieved by using resonant light trapping in 180-nanometer-diameter nanowires that only covered 12% of the surface. The share of sunlight converted into photocurrent (71%) was six times the limit in a simple ray optics description. Furthermore, the highest open-circuit voltage of 0.906 volt exceeds that of its planar counterpart, despite about 30 times higher surface-to-volume ratio of the nanowire cell.
Recently there has been a paradigm shift in nonvolatile computer memories from silicon-technology-based EEPROMs (electrically erasable, programmable read-only memories) to devices in which the stored information is coded into + and − polarizations in thin-film ferroelectric capacitors. Such devices have read and erase/rewrite speeds of the order of 1–35 ns, many orders of magnitude faster than the erase/rewrite speeds of the best EEPROMs (Table I). However, fundamental questions concerning their lifetimes had delayed full commercialization. Because ferroelectrics normally have extremely large dielectric constants, their use as nonswitching capacitors in dynamic random-access memories (DRAMs) is also rapidly evolving. The majority of studies to date have emphasized lead zirconate titanate (PZT)-based capacitors for nonvolatile ferroelectric random-access memories (NVFRAMs) and barium strontium titanate-based capacitor DRAMs (see Table II).
A macaque monkey with a preexisting facial nerve injury showed a synkinesis of perioral muscles with blinking and thus provided a serendipitous model for a multiphasic analysis of this common neurologic syndrome. The amplitude of the paretic eyelid in spontaneous and air-puff-induced blinks was about one-third that of the normal eyelid. Despite the blink hypometria, induced blink durations remained matched for the two lids. EMG confirmed co-contraction of the zygomaticus and orbicularis oculi muscles on the affected side during blinking, with silence of the zygomaticus on the normal side. Neuroanatomic investigation showed that, on the affected side, some zygomaticus motoneurons were in the somatotopically correct nuclear subdivisions but that the majority were in the dorsal subdivision, which normally innervates the orbicularis oculi. This study supports the contention that some orbicularis oculi motoneurons are incorrectly rerouted to supply the perioral musculature following recovery from a peripheral seventh-nerve injury. This same pattern of relative weakness in eyelid muscles and the stereotyped co-contraction of lid and perioral muscles with blinking occurs in humans, suggesting that aberrant reinnervation may be the mechanism for this clinical phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.