When selection on males and females differs, the sexes may diverge in phenotype. Hormones serve as a proximate regulator of sex differences by mediating sex-biased trait expression. To integrate these perspectives, we consider how suites of traits mediated by the same hormone in both sexes might respond to selection. In male birds, plasma testosterone (T) varies seasonally and among species according to mating system. When elevated experimentally, it is known to enhance some components of fitness and to decrease others. We report that female T also varies seasonally and co-varies with male T. Female T is higher in relation to male T in sexually monomorphic species and is higher absolutely in females of species with socially monogamous mating systems, which suggests adaptation. We also consider the effect of experimentally elevated T on females and whether traits are sensitive to altered T. We hypothesize that sensitive traits could become subject to selection after a natural change in T and that traits with opposing fitness consequences in males and females could constrain dimorphism. Results from birds, including the dark-eyed junco (Junco hyemalis), reveal many sensitive traits, some of which appear costly and may help to account for observed levels of sexual dimorphism.
Young vertebrates have limited capacity to synthesize antibodies and are dependent on the protection of maternally transmitted antibodies for humoral disease resistance early in life. However, mothers may enhance fitness by priming their offspring's immune systems to elevate disease resistance. Transgenerational induced defences have been documented in plants and invertebrates, but maternal priming of offspring immunity in vertebrates has been essentially neglected. To test the ability of mothers to stimulate the immune systems of offspring, we manipulated maternal and offspring antigen exposure in a wild population of birds, pied flycatchers (
Ficedula hypoleuca
). We show that immunization of the mother before egg laying apparently stimulates a transgenerational defence against pathogens by elevating endogenous offspring antibody production. If the disease environments encountered by mothers and offspring are similar, this transgenerational immune priming may allow young to better cope with the local pathogen fauna.
We evaluated biotic and abiotic predictors of rest-phase hypothermia in wintering blue tits (Cyanistes caeruleus) and also assessed how food availability influences nightly thermoregulation. On any given night, captive blue tits (with unrestricted access to food) remained largely homeothermic, whereas free-ranging birds decreased their body temperature (T(b)) by about 5 degrees C. This was not an effect of increased stress in the aviary as we found no difference in circulating corticosterone between groups. Nocturnal T(b) in free-ranging birds varied with ambient temperature, date and time. Conversely, T(b) in captive birds could not be explained by climatic or temporal factors, but differed slightly between the sexes. We argue that the degree of hypothermia is controlled predominantly by birds' ability to obtain sufficient energy reserves during the day. However, environmental factors became increasingly important for thermoregulation when resources were limited. Moreover, as birds did not enter hypothermia in captivity when food was abundant, we suggest that this strategy has associated costs and hence is avoided whenever resource levels permit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.