The combination of the most prestigious optical and wireless technologies for implementing a modern broadband integrated access network has been progressively gaining ground. By extending the network coverage in a cost-efficient way, hybrid wireless-optical networks are able to enclose a larger number of potential subscribers than standalone access architectures. Hence, they are capable of increasing revenue levels and facilitating commercial penetration to the telecom market. At the same time, hybrid wireless-optical networks pose an ambitious, alternative, and efficient solution to coping with new bandwidth-hungry user applications. Hybrid wireless-optical networks incorporate sophisticated modules, fabrics, and network entities to effectively provide adequate quality of service (QoS) provisioning. This survey endeavors to classify the main features of wireless-optical integration. We provide a comprehensive compilation of the latest architectures, integrated technologies, QoS features, and dynamic bandwidth allocation (DBA) schemes. In addition, new trends towards wireless-optical convergence are presented. Moreover, as the up-to-date hybrid network standards remain under development, since there is not yet an integrated standard for approving hybrid network access platforms, we accompany this survey with detailed challenges indicating potential avenues of future research.
Communication in Body Area Networks (BANs) involves weak signals, due to safety regulations, huge pathloss from the absorption and usually high mobility. In this work, we introduce an improved mobility aware relaying scheme for BANs, as an alternative to the two-hop star topology extension of IEEE 802.15.6-2012, in order to enhance packet delivery. Specifically, an emergency phase (EP) is added after the regular random access phase (RAP1) of the superframe and the connected nodes transmit rescue beacons to reach disconnected nodes. When a disconnected node receives a rescue beacon, it participates in the current EP. The packets are buffered and relayed to the hub by the connected nodes. Simulation results show that it is feasible to receive more packets compared to the standard with a justified increase of energy consumption due to random access which is compensated with increased packet delivery.
Communication in Body Area Networks (BANs) involves extremely weak signals because of safety regulations. Human mobility adds one more layer of complexity as it has an effect on path loss depending on the activity. In this paper, we improve the quality of service (QoS) by searching for the lost nodes. Specifically, an Emergency Phase (EP) is added after RAP1 of IEEE 802.15.6-2012 superframe. The connected nodes transmit rescue beacons to reach distressed nodes, i.e. nodes that are disconnected. If a distressed node receives a rescue beacon, it participates in the current EP. The packets are buffered and relayed to the hub by the connected nodes. Our results show that when EP is enabled it is feasible to reach more nodes.
Communication in Body Area Networks (BANs) involves weak signals, due to safety regulations, huge pathloss from the absorption and usually high mobility. In this work, we introduce an improved mobility aware relaying scheme for BANs, as an alternative to the two-hop star topology extension of IEEE 802.15.6-2012, in order to enhance packet delivery. Specifically, an emergency phase (EP) is added after the regular random access phase (RAP1) of the superframe and the connected nodes transmit rescue beacons to reach disconnected nodes. When a disconnected node receives a rescue beacon, it participates in the current EP. The packets are buffered and relayed to the hub by the connected nodes. Simulation results show that it is feasible to receive more packets compared to the standard with a justified increase of energy consumption due to random access which is compensated with increased packet delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.