Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent.
The aim of the present study was to determine whether acute sodium overload could trigger an inflammatory reaction in the tubulointerstitial (TI) compartment in normal rats. Four groups of Sprague-Dawley rats received increasing NaCl concentrations by intravenous infusion. Control (C): Na+ 0.15 M; G1: Na+ 0.5 M; G2: Na+ 1.0 M; and G3: Na+ 1.5 M. Creatinine clearance, mean arterial pressure (MAP), renal blood flow (RBF), and sodium fractional excretion were determined. Transforming growth factor beta1 (TGF-beta1), alpha-smooth muscle actin (alpha-SMA), RANTES, transcription factor nuclear factor-kappa B (NF-kappaB), and angiotensin II (ANG II) were evaluated in kidneys by immunohistochemistry. Animals with NaCl overload showed normal glomerular function without MAP and RBF modifications and exhibited a concentration-dependent natriuretic response. Plasmatic sodium increased in G2 (P < 0.01) and G3 (P < 0.001). Light microscopy did not show renal morphological damage. Immunohistochemistry revealed an increased number of ANG II-positive tubular cells in G2 and G3, and positive immunostaining for NF-kappaB only in G3 (P < 0.01). Increased staining of alpha-SMA in the interstitium (P < 0.01), TGF-beta1 in tubular cells (P < 0.01), and a significant percentage (P < 0.01) of positive immunostaining for RANTES in tubular epithelium and in glomerular and peritubular endothelium were detected in G3 > G2 > C group. These results suggest that an acute sodium overload is able 'per se' to initiate TI endothelial inflammatory reaction (glomerular and peritubular) and incipient fibrosis in normal rats, independently of hemodynamic modifications. Furthermore, these findings are consistent with the possibility that activation of NF-kappaB and local ANG II may be involved in the pathway of this inflammatory process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.