The upward movement of water due to transpiration stops when soil water potential ( s ) drops below leaf water potential ( L ). Under these circumstances, water can move in any direction in the plant-soil continuum through the passive conduits of roots and stems towards the lowest s . This is generally termed as hydraulic redistribution (HR), but the positioning and orientation of the driving water potential gradient may vary. Any experimental method that can measure bi-directional and low flows in the sapwood of roots and stems will be suitable to detect HR. Using one approach for measuring sap flow (the heat field deformation technique, HFD) in several forest species and sites across Europe, we were able to provide evidence on different types of HR: vertical hydraulic redistribution (VHR), horizontal hydraulic redistribution (HHR), foliar uptake (FU) and tissue dehydration (TD). VHR is the vertical water movement through roots in response to water potential differences between deep and topsoil, either hydraulic lift or hydraulic descent. HHR is the lateral water movement through roots in response to horizontal water potential gradients, namely under localised irrigation. FU is the water movement from crown to soil through stems when the crown is wetted by foggy weather. TD is the downward movement of water in stems or roots from above-ground tree tissues to soil under prolonged drought or frost. Results from direct sap flow measurements indicated the vectoral and widespread nature of HR, a phenomenon of paramount importance for overall physiology and ecohydrology.
Abstract:Redistribution of ground-level rainfall and interception loss by an isolated Quercus ilex tree were measured over 2 years in a Mediterranean oak savannah. Stemflow, meteorological variables and sap flow were also monitored. Rainfall at ground level was measured by a set of rain-gauges located in a radial layout centred on the tree trunk and extending beyond the crown limits. Interception loss was computed as the difference between the volume of rainwater that would reach the ground in the absence of the tree and the volume of water that actually fell on the ground sampling area (stemflow included). This procedure provided correct interception loss estimates, irrespective of rainfall inclination. Results have shown a clear non-random spatial distribution of ground-level rainfall, with rainwater concentrations upwind beneath the crown and rain-shadows downwind. Interception loss amounted to 22% of gross rainfall, per unit of crown-projected area. Stand interception loss, per unit of ground area, was only 8% of gross rainfall and 28% of tree evapotranspiration. These values reflect the low crown cover fraction of the stand (0Ð39) and the specific features of the Mediterranean rainfall regime (predominantly with few large storms). Nevertheless, it still is an important component of the water balance of these Mediterranean ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.