The diagnosis of myeloid neoplasms (MN) has significantly evolved through the last few decades. Next Generation Sequencing (NGS) is gradually becoming an essential tool to help clinicians with disease management. To this end, most specialized genetic laboratories have implemented NGS panels targeting a number of different genes relevant to MN. The aim of the present study is to evaluate the performance of four different targeted NGS gene panels based on their technical features and clinical utility. A total of 32 patient bone marrow samples were accrued and sequenced with 3 commercially available panels and 1 custom panel. Variants were classified by two geneticists based on their clinical relevance in MN. There was a difference in panel's depth of coverage. We found 11 discordant clinically relevant variants between panels, with a trend to miss long insertions. Our data show that there is a high risk of finding different mutations depending on the panel of choice, due both to the panel design and the data analysis method. Of note, CEBPA, CALR and FLT3 genes, remains challenging the use of NGS for diagnosis of MN in compliance with current guidelines. Therefore, conventional molecular testing might need to be kept in place for the correct diagnosis of MN for now. OPEN ACCESS Citation: Aguilera-Diaz A, Vazquez I, Ariceta B, Mañú A, Blasco-Iturri Z, Palomino-Echeverría S, et al. (2020) Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. PLoS ONE 15(1): e0227986. https://doi.org/10.
Transformation of Waldenström’s macroglobulinemia (WM) to diffuse large B-cell lymphoma (DLBCL) occurs in up to 10% of patients and is associated with an adverse outcome. Here we performed the first whole-exome sequencing study of WM patients who evolved to DLBCL and report the genetic alterations that may drive this process. Our results demonstrate that transformation depends on the frequency and specificity of acquired variants, rather than on the duration of its evolution. We did not find a common pattern of mutations at diagnosis or transformation; however, there were certain abnormalities that were present in a high proportion of clonal tumor cells and conserved during this transition, suggesting that they have a key role as early drivers. In addition, recurrent mutations gained in some genes at transformation (for example, PIM1, FRYL and HNF1B) represent cooperating events in the selection of the clones responsible for disease progression. Detailed comparison reveals the gene abnormalities at diagnosis and transformation to be consistent with a branching model of evolution. Finally, the frequent mutation observed in the CD79B gene in this specific subset of patients implies that it is a potential biomarker predicting transformation in WM.
Immunoglobulin M (IgM) monoclonal gammopathies show considerable variability, involving three different stages of presentation: IgM monoclonal gammopathy of undetermined significance (IgM-MGUS), asymptomatic Waldenström's macroglobulinemia (AWM), and symptomatic WM (SWM). Despite recent findings about the genomic and transcriptomic characteristics of such disorders, we know little about the causes of this clinical heterogeneity or the mechanisms involved in the progression from indolent to symptomatic forms. To clarify these matters, we have performed a gene expression and mutational study in a well-characterized cohort of 69 patients, distinguishing between the three disease presentations in an attempt to establish the relationship with the clinical and biological features of the patients. Results showed that the frequency of genetic alterations progressively increased from IgM-MGUS to AWM and SWM. This means that, in contrast to MYD88 p.L265P and CXCR4 WHIM mutations, present from the beginning of the pathogenesis, most of them would be acquired during the course of the disease. Moreover, the expression study revealed a higher level of expression of genes belonging to the Toll-like receptor (TLR) signaling pathway in symptomatic versus indolent forms, which was also reflected in the disease presentation and prognosis. In conclusion, our findings showed that IgM monoclonal gammopathies present higher mutational burden as the disease progresses, in parallel to the upregulation of relevant pathogenic pathways. This study provides a translational view of the genomic basis of WM pathogenesis.
Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.