In the last century, the banana crop and industry experienced dramatic losses due to an epidemic of Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f.sp. cubense ( Foc ) race 1. An even more dramatic menace is now feared due to the spread of Foc tropical race 4. Plant genetic resistance is generally considered as the most plausible strategy for controlling effectively such a devastating disease, as occurred for the first round of FWB epidemic. Nevertheless, with at least 182 articles published since 1970, biological control represents a large body of knowledge on FWB. Remarkably, many studies deal with biological control agents (BCAs) that reached the field-testing stage and even refer to high effectiveness. Some selected BCAs have been repeatedly assayed in independent trials, suggesting their promising value. Overall under field conditions, FWB has been controlled up to 79% by using Pseudomonas spp. strains, and up to 70% by several endophytes and Trichoderma spp. strains. Lower biocontrol efficacy (42–55%) has been obtained with arbuscular mycorrhizal fungi, Bacillus spp., and non-pathogenic Fusarium strains. Studies on Streptomyces spp. have been mostly limited to in vitro conditions so far, with very few pot-experiments, and none conducted in the field. The BCAs have been applied with diverse procedures (e.g., spore suspension, organic amendments, bioformulations, etc.) and at different stages of plant development (i.e., in vitro , nursery, at transplanting, post-transplanting), but there has been no evidence for a protocol better than another. Nonetheless, new bioformulation technologies (e.g., nanotechnology, formulation of microbial consortia and/or their metabolites, etc.) and tailor-made consortia of microbial strains should be encouraged. In conclusion, the literature offers many examples of promising BCAs, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.
The genetic diversity of Phytophthora spp. was investigated in potted ornamental and fruit tree species. A metabarcoding approach was used, based on a semi‐nested PCR with Phytophthora genus‐specific primers targeting the ITS1 region of the rDNA. More than 50 ITS1 sequence types representing at least 15 distinct Phytophthora taxa were detected. Nine had ITS sequences that grouped them in defined taxonomic groups (P. nicotianae, P. citrophthora, P. meadii, P. taxon Pgchlamydo, P. cinnamomi, P. parvispora, P. cambivora, P. niederhauserii and P. lateralis) whereas three phylotypes were associated to two or more taxa (P. citricola taxon E or III; P. pseudosyringae, P. ilicis or P. nemorosa; and P. cryptogea, P. erythroseptica, P. himalayensis or P. sp. ‘kelmania’) that can be challenging to resolve with ITS1 sequences alone. Three additional phylotypes were considered as representatives of novel Phytophthora taxa and defined as P. meadii‐like, P. cinnamomi‐like and P. niederhauserii‐like. Furthermore, the analyses highlighted a very complex assemblage of Phytophthora taxa in ornamental nurseries within a limited geographic area and provided some indications of structure amongst populations of P. nicotianae (the most prevalent taxon) and other taxa. Data revealed new host–pathogen combinations, evidence of new species previously unreported in Italy (P. lateralis) or Europe (P. meadii) and phylotypes representative of species that remain to be taxonomically defined. Furthermore, the results reinforced the primary role of plant nurseries in favouring the introduction, dissemination and evolution of Phytophthora species.
RNA silencing plays a critical role in plant resistance against viruses. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that interfere with the cellular silencing machinery through various mechanisms not always well understood. We examined the role of Mungbean yellow mosaic virus (MYMV) AC4 and showed that it is essential for infectivity but not for virus replication. It acts as a determinant of pathogenicity and counteracts virus induced gene silencing by strongly suppressing the systemic phase of silencing whereas it does not interfere with local production of siRNA. We demonstrate the ability of AC4 to bind native 21–25 nt siRNAs in vitro by electrophoretic mobility shift assay. While most of the known VSRs have cytoplasmic localization, we observed that despite its hydrophilic nature and the absence of trans-membrane domain, MYMV AC4 specifically accumulates to the plasma membrane (PM). We show that AC4 binds to PM via S-palmitoylation, a process of post-translational modification regulating membrane–protein interactions, not known for plant viral protein before. When localized to the PM, AC4 strongly suppresses systemic silencing whereas its delocalization impairs VSR activity of the protein. We also show that AC4 interacts with the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1), a positive regulator of the cell-to-cell movement of RNAi. The absolute requirement of PM localization for direct silencing suppression activity of AC4 is novel and intriguing. We discuss a possible model of action: palmitoylated AC4 anchors to the PM by means of palmitate to acquire the optimal conformation to bind siRNAs, hinder their systemic movement and hence suppress the spread of the PTGS signal in the plant.
Alternaria brown spot is one of the most important diseases of tangerines and their hybrids worldwide. Recently, outbreaks in Mediterranean areas related to susceptible cultivars, refocused attention on the disease. Twenty representatives were selected from a collection of 180 isolates of Alternaria spp. from citrus leaves and fruit. They were characterized along with reference strains of Alternaria spp. Micro- and macroscopic characteristics separated most Alternaria isolates into six morphotypes referable to A. alternata (5) and A. arborescens (1). Phylogenetic analyses, based on endopolygalacturonase (endopg) and internal transcribed spacer (ITS), confirmed this finding. Moreover, a five-gene phylogeny including two anonymous genomics regions (OPA 1–3 and OPA 2–1), and the beta-tubulin gene (ß-tub), produced a further clustering of A. alternata into three clades. This analysis suggested the existence of intra-species molecular variability. Investigated isolates showed different levels of virulence on leaves and fruit. In particular, the pathogenicity on fruit seemed to be correlated with the tissue of isolation and the clade. The toxigenic behavior of Alternaria isolates was also investigated, with tenuazonic acid (TeA) being the most abundant mycotoxin (0.2–20 mg/L). Isolates also synthesized the mycotoxins alternariol (AOH), its derivate alternariol monomethyl ether (AME), and altenuene (ALT), although to a lesser extent. AME production significantly varied among the six morphotypes. The expression of pksJ/pksH, biosynthetic genes of AOH/AME, was not correlated with actual toxin production, but it was significantly different between the two genotypes and among the four clades. Finally, ten isolates proved to express the biosynthetic genes of ACTT1 phytotoxin, and thus to be included in the Alternaria pathotype tangerine. A significant correlation between pathogenicity on leaves and ACTT1 gene expression was recorded. The latter was significantly dependent on geographical origin. The widespread occurrence of Alternaria spp. on citrus fruit and their ability to produce mycotoxins might represent a serious concern for producers and consumers.
A metabarcoding method based on genus-specific primers and 454 pyrosequencing was utilized to investigate the genetic diversity of Phytophthora spp. in soil and root samples of potted plants, from eight nurseries. Pyrosequencing enabled the detection of 25 Phytophthora phylotypes distributed in seven different clades and provided a much higher resolution than a corresponding cloning/Sanger sequencing approach. Eleven of these phylotypes, including P. cactorum, P. citricola s.str., P. palmivora, P. palmivora-like, P. megasperma or P. gonapodyides, P. ramorum, and five putative new Phytophthora species phylogenetically related to clades 1, 2, 4, 6, and 7 were detected only with the 454 pyrosequencing approach. We also found an additional 18 novel records of a phylotype in a particular nursery that were not detected with cloning/Sanger sequencing. Several aspects confirmed the reliability of the method: (i) many identical sequence types were identified independently in different nurseries, (ii) most sequence types identified with 454 pyrosequencing were identical to those from the cloning/Sanger sequencing approach and/or perfectly matched GenBank deposited sequences, and (iii) the divergence noted between sequence types of putative new Phytophthora species and all other detected sequences was sufficient to rule out sequencing errors. The proposed method represents a powerful tool to study Phytophthora diversity providing that particular attention is paid to the analysis of 454 pyrosequencing raw read sequences and to the identification of sequence types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.