A study was conducted to determine the combined effect of sequestration and laboratory-scale bioremediation on the bioavailability of polycyclic aromatic hydrocarbons in soil. After the compounds had aged for 140-203 days in soil, bacteria capable of degrading the compounds were added, and the availability of the hydrocarbons after bioremediation was determined. Aging decreased the amount of phenanthrene, anthracene, fluoranthene, and pyrene available to bacteria as shown by increases in the amount of the compounds remaining after bioremediation and to earthworms (Eisenia foetida) as shown by lower tissue concentrations, percentages assimilated, and bioconcentration factors. Aging also diminished the availability of anthracene to wheat and barley. Bioremediation caused a marked diminution in the amount of phenanthrene, fluoranthene, and pyrene taken up by earthworms. The smallest amounts of these three compounds were assimilated from soil in which they had aged and then been subject to biodegradation. The results show that the combined effects of sequestration and bioremediation lead to a more marked reduction in bioavailability than either process alone.
Although humans vary in their response to chemicals, comprehensive measures of susceptibility have generally not been incorporated into human risk assessment. The U.S. EPA dose-response-based risk assessments for cancer and the RfD/RfC (reference dose-reference concentration) approach for noncancer risk assessments are assumed to protect vulnerable human subgroups. However, these approaches generally rely on default assumptions and do not consider the specific biological basis for potential susceptibility to a given toxicant. In an effort to focus more explicitly on this issue, this article addresses biological factors that may affect human variability and susceptibility to trichloroethylene (TCE), a widely used halogenated industrial solvent. In response to Executive Order 13045, which requires federal agencies to make protection of children a high priority in implementing their policies and to take special risks to children into account when developing standards, this article examines factors that may affect risk of exposure to TCE in children. The influence of genetics, sex, altered health state, coexposure to alcohol, and enzyme induction on TCE toxicity are also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.