The Hippo pathway kinase LATS2 promotes contact inhibition of growth. How LATS2 is activated in response to changes in cell density is unknown. It is found that tight junction protein AMOTL2 is a novel activator of LATS2, raising the possibility that tight junction assembly promotes LATS2-dependent inhibition of cell proliferation.
A novel mammalian plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase), named NTPDase8, has been cloned and characterized. Analysis of cDNA reveals an open reading frame of 1491 base pairs encoding a protein of 497 amino acid residues with an estimated molecular mass of 54650 Da and a predicted isoelectric point of 5.94. In a mouse, the genomic sequence is located on chromosome 2A3 and is comprised of 10 exons. The deduced amino acid sequence reveals eight putative N-glycosylation sites, two transmembrane domains, five apyrase-conserved regions, and 20-50% amino acid identity with other mammalian NTPDases. mRNA expression was detected in liver, jejunum, and kidney. Both intact cells and crude cell lysates from COS-7 cells expressing NTPDase8 hydrolyzed P2 receptor agonists, namely, ATP, ADP, UTP, and UDP, but did not hydrolyze AMP. There was an absolute requirement for divalent cations for the catalytic activity (Ca(2+) > Mg(2+)) with an optimal pH between 5.5 and 8.0 for ATP and 6.4 for ADP hydrolysis. Kinetic parameters derived from analysis of crude cell lysates showed that the enzyme had lower apparent K(m) values for adenine nucleotides and for triphosphonucleosides (K(m,app) of 13 microM for ATP, 41 microM for ADP, 47 microM for UTP, and 171 microM for UDP). Hydrolysis of triphosphonucleosides resulted in a transient accumulation of the corresponding diphosphonucleoside, as expected from the apparent K(m) values. Enzymatic properties of NTPDase8 differ from those of other NTPDases suggesting an alternative way to modulate nucleotide levels and consequently P2 receptor activation.
Lysophosphatidic acid (LPA), via interaction with its G-protein coupled receptors, is involved in various pathological conditions. Extracellular LPA is mainly produced by the enzyme autotaxin (ATX). Using fibroblast-like synoviocytes (FLS) isolated from synovial tissues of patients with rheumatoid arthritis (RA), we studied the expression profile of LPA receptors, LPAinduced cell migration, and interleukin (IL)-8 and IL-6 production. We report that FLS express LPA receptors LPA 1-3 . Moreover, exogenously applied LPA induces FLS migration and secretion of IL-8/IL-6, whereas the LPA 3 agonist L-sn-1-Ooleoyl-2-methyl-glyceryl-3-phosphothionate (2S-OMPT) stimulates cytokine synthesis but not cell motility. The LPA-induced FLS motility and cytokine production are suppressed by LPA 1/3 receptor antagonists diacylglycerol pyrophosphate and (S)-phosphoric acid mono-(2-octadec-9-enoylamino-3-[4-(pyridine-2-ylmethoxy)-phenyl]-propyl) ester (VPC32183). Signal transduction through p42/44 mitogen-activated protein kinase (MAPK), p38 MAPK, and Rho kinase is involved in LPA-mediated cytokine secretion, whereas LPA-induced cell motility requires p38 MAPK and Rho kinase but not p42/44 MAPK. Treatment of FLS with tumor necrosis factor-␣ (TNF-␣) increases LPA 3 mRNA expression and correlates with enhanced LPA-or OMPT-induced cytokine production. LPA-mediated superproduction of cytokines by TNF-␣-primed FLS is abolished by LPA 1/3 receptor antagonists. We also report the presence of ATX in synovial fluid of patients with RA. LPA 1/3 receptor antagonists and ATX inhibitors reduce the synovial fluid-induced cell motility. Together the data suggest that LPA 1 and LPA 3 may contribute to the pathogenesis of RA through the modulation of FLS migration and cytokine production. The above results provide novel insights into the relevance of LPA receptors in FLS biology and as potential therapeutic targets for the treatment of RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.