Summary
To evaluate the contribution of rock fragments to the soil’s total carbon content, the soil of 26 sites, ranging from the Canadian Arctic to the Jordan desert, was analysed for the content of organic C and total N in both fine earth and skeleton fractions. The soils, uncultivated and cultivated, are derived from 11 parent materials: sandstone, mica‐schist, granite, gneiss, basaltic pyroclastites, trachyte, dolomite, beach deposits, clay schist, marl and serpentinite. For each soil horizon the contents of fine earth and skeleton were determined by volume. Both fractions were analysed for bulk density, total and organic C and total N. Our results indicate that rock fragments contain amounts of C and N that depend on the nature of the parent material and on its resistance to the weathering processes. The C and N of both fine earth and skeleton were used to calculate the contents of these elements for three depths. At each depth, the skeleton contributes C and N to the soil depending on its abundance. We conclude that the contribution of the rock fragments to the soil C and N cannot be predicted from the soil taxa, but can from the parent material. Calculations that exclude C and N of the skeleton could lead to errors in the estimates of these two elements in soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.