The Main Ethiopian Rift (MER) has a complex structural pattern composed of southern, central, and northern segments. Ages of onset of faulting and volcanism apparently indicate a heterogeneous time‐space evolution of the segments, generally referred to as a northward progression of the rifting process. New structural, petrological, and geochronological data have been used to attempt reconciling the evolution of the distinct MER segments into a volcanotectonic scenario accounting for the propagation of the Afar and the Kenya Rifts. In this evolutionary model, extension affected the Southern MER in the early Miocene (20–21 Ma) due to the northward propagation of the Kenya Rift‐related deformation. This event lasted until 11 Ma, then deformation decreased radically and was resumed in Quaternary times. In the late Miocene (11 Ma), deformation focused in the Northern MER forming a proto‐rift that we consider as the southernmost propagation of Afar. No major extensional deformation affected the Central MER in this period, as testified by the emplacement at 12–8 Ma of extensive plateau basalts currently outcropping on both rift margins. Significant rift opening occurred in the Central MER during the Pliocene (∼5–3 Ma) with the eruption of voluminous ignimbritic covers (Nazret sequence) exposed both on the rift shoulders and on the rift floor. The apparent discrepancy between the heterogeneous propagation of the three MER segments could be reconciled by considering the opening of Central MER and the later reactivation of the Southern MER as due to a southward propagation of rifting triggered by counterclockwise rotation of the Somalian plate starting around 10 Ma.
[1] Oblique rifting is investigated through centrifuge experiments that reproduce extension of a continental lithosphere containing a preexisting weakness zone. During extension, this weakness localizes deformation, and different rift obliquity is obtained by varying its trend with respect to the stretching direction. Model results show that deformation is mostly controlled by the obliquity angle a (defined as the angle between the orthogonal to the rift trend and the extension direction). For low obliquity (a < 45°), rifting is initially characterized by activation of large, en echelon boundary faults bordering a subsiding rift depression, with no deformation affecting the rift floor. Increasing extension results in the abandonment of the boundary faults and the development of new faults within the rift depression. These faults are orthogonal to the direction of extension and arranged in two en echelon segments linked by a complex transfer zones, characterized by strike-slip component of motion. In these models, a strong strain partitioning is observed between the rift margins, where the boundary fault systems have an oblique-slip motion, and the valley floor that away from the transfer zones is affected by a pure extension. Moderate obliquity (a = 45°) still results in a two-phase rift evolution, although boundary fault activity is strongly reduced, and deformation is soon transferred to the rift depression. The fault pattern is similar to that of low-obliquity models, although internal faults become slightly oblique to the orthogonal to the direction of extension. Deformation partitioning between the rift margins and the valley floor is still observed but is less developed than for low-obliquity rifting. For high obliquity (a > 45°), no boundary faults form, and the extensional deformation affects the rift depression since early stages of extension. Dominance of the strike-slip motion over extension leads to the development of oblique-slip and nearly pure strike-slip faults, oblique to both the rift trend and the orthogonal to the extension direction, with no strain partitioning between the margins and the rift floor. These results suggest that oblique reactivation of preexisting weaknesses plays a major role in controlling rift evolution, architecture, and strain partitioning, findings that have a significant relevance for natural oblique rifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.